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Abstract—Energy management in microgrids is typically for-
mulated as a non-linear optimization problem. Solving it in
a centralized manner not only requires high computational
capabilities at the microgrid central controller (MGCC) but may
also infringe customer privacy. Existing distributed approaches,
on the other hand, assume that all the generations and loads
are connected to one bus and ignore the underlying power
distribution network and the associated power flows and system
operational constraints. Consequently, the schedules produced by
those algorithms may violate those constraints and thus are not
feasible in practice. Therefore, the focus of this paper is on the
design of a distributed energy management strategy (EMS) for
the optimal operation of microgrids with consideration of the
distribution network and the associated constraints. Specifically,
we formulate microgrid energy management as an optimal power
flow problem and propose a distributed EMS where the MGCC
and the local controllers jointly compute an optimal schedule.
As one demonstration, we apply the proposed distributed EMS
to a real microgrid in Guangdong Province, China, consisting
of photovoltaics, wind turbines, diesel generators, and a battery
energy storage system. The simulation results demonstrate that
the proposed distributed EMS is effective in both islanded
and grid-connected mode. It is also shown that the proposed
algorithm converges fast.

I. INTRODUCTION

A microgrid is a low-voltage distribution system consisting
of distributed energy resources (DERs) and controllable loads,
which can be operated in either islanded or grid-connected
mode [1]. DERs include a variety of distributed generation
(DG) units such as wind turbines (WTs) and photovoltaics
(PVs) and distributed storage (DS) units such as batteries.
Sound operation of a microgrid requires an energy manage-
ment strategy (EMS) which controls the power flows in the
microgrid by adjusting the power imported/exported from/to
the main grid, the dispatchable DERs, and the controllable
loads based on the present and forecasted market information,
generation, and load, respectively, in order to meet certain
operational objectives (e.g., minimizing costs) [1].

Energy management in microgrids is typically formulated
as a non-linear optimization problem. Various centralized
methods have been proposed to solve it in the literature,
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including mixed integer programming [2], sequential quadratic
programming [3], neural networks [4], etc. The centralized
approaches [2]–[4] require high computational capabilities at
the microgrid central controller (MGCC), which is neither
efficient nor scalable. Moreover, a centralized EMS requires
the MGCC to gather information of the DERs (e.g., pro-
duction costs, constraints, etc.) and the loads (e.g., customer
preferences, constraints, etc.) as the inputs for optimization.
However, different DERs may belong to different entities and
they may keep their information private [5]. Customers may
also be unwilling to expose their information due to the issue
of privacy [6]. Therefore, in this paper, we are interested in
developing a distributed EMS which is efficient, scalable, and
privacy preserving.

Several distributed algorithms have been proposed for the
operation of microgrids in the literature. In [5], a distributed
algorithm based on the classical symmetrical assignment prob-
lem is proposed. Energy management is formulated as a
resource allocation problem in [7] and distributed algorithms
are proposed for distributed allocation. A convex problem
formulation can be found in [8] and dual decomposition is used
to develop a distributed EMS to maintain the supply-demand
balance in microgrids. A privacy-preserving energy scheduling
algorithm in microgrids is proposed in [6], where the privacy
constraints are integrated with the linear programming model
and distributed algorithms are developed.

The problem with the existing distributed approaches [5]–
[8] is that they consider the supply-demand matching in an
abstract way, where the aggregate demand is simply equal
to the supply. They assume that all the generations and
loads are connected to one bus and ignore the underlying
power distribution network and the associated power flows
(e.g., Kirchhoff’s law) and system operational constraints (e.g.,
voltage tolerances). Consequently, the schedules produced by
those algorithms may violate those constraints and thus are
not feasible in practice. It is worth noting that distribution
networks have been taken into account in a few recent demand
response studies [9]. However, the idea of integrating distri-
bution networks with distributed energy management where
both supply side and demand side management (DSM) are
considered has not been explored.
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The focus of this paper is on the design of a distributed EMS
for the optimal operation of microgrids with consideration of
the underlying power distribution network and the associated
constraints. More specifically, we consider a microgrid con-
sisting of multiple DERs and controllable loads. The objective
of the EMS is to control the power flows in the microgrid in
order to i) maximize the use of renewable DERs and minimize
the costs of generation, the costs of energy storage, and the
costs of energy purchase from the main grid, ii) minimize
the dissatisfactions of the customers in the DSM, and iii)
minimize the power losses subject to the DER constraints, the
load constraints, the power flow constraints, and the system
operational constraints.

Specifically, we formulate energy management in micro-
grids as an optimal power flow (OPF) problem. The OPF
problem is difficult to solve due to the non-convex power flow
constraints. We convexify the OPF problem by relaxing the
power flow constraints (See [10], [11] for a tutorial on convex
relaxation of OPF). Sufficient conditions for the exactness
of the relaxation have been derived in recent works [12]–
[14], which hold for a variety of IEEE test systems and
real distribution systems. Therefore, we focus on solving
the relaxed OPF problem (OPF-r) in this paper. The OPF-
r problem is a centralized convex optimization problem. To
solve it in a distributed manner, we propose a distributed
EMS where the MGCC and the local controllers (LCs) jointly
compute an optimal schedule.

As one demonstration, we apply the proposed distributed
optimal EMS to a real microgrid in Guangdong Province,
China, consisting of PVs, WTs, diesel generators, and a
battery energy storage system (BESS). The simulation results
demonstrate the effectiveness of the proposed EMS in both
islanded and grid-connected mode. It is also shown that the
proposed distributed algorithm converges fast.

The rest of the paper is organized as follows. We introduce
the system model in Section II and propose the EMS in
Section III. Simulation results are provided in Section IV and
conclusions are given in Section V.

II. SYSTEM MODEL

In this section, we describe the system model for developing
the proposed distributed EMS. We first give an overview of
the system followed by the detailed models of the DG, the DS,
and the loads considered in the microgrid. We then model the
power distribution network using a branch flow model and
formulate microgrid energy management as an OPF problem.

A. System Overview

A low-voltage power distribution network generally has a
radial structure [9]. Thus, we consider a radial microgrid con-
sisting of a set of DG units denoted by G , {g1, g2, . . . , gG},
DS units denoted by B , {b1, b2, . . . , bB}, and controllable
loads denoted by L , {l1, l2, . . . , lL}. In the microgrid, there
is a MGCC which coordinates the operation of the DERs and
the controllable loads. At each of the DERs and the loads,
there is a LC which is able to coordinate with the MGCC to
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... ...

...
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Fig. 1. System architecture.

compute its schedule locally via a two-way communication
infrastructure. Fig. 1 shows the system architecture.

In this paper, we use a discrete-time model with a finite
horizon. We consider a time period or namely a scheduling
horizon which is divided into T equal intervals ∆t, denoted
by T , {0, 1, . . . , T − 1}. By changing the length of the
scheduling horizon, we can consider both day-ahead and real-
time operations of the microgrid.

B. DG Model

We consider three types of DG units in the microgrid: PVs,
WTs, and diesel generators, where PVs and WTs are non-
dispatchable renewable DERs and diesel is dispatchable. For
each DG g ∈ G, we denote its complex output power by
sg(t) , pg(t) + iqg(t), where pg(t) is the active power and
qg(t) is the reactive power. The detailed models of DG units
are given as follows.

1) PV: Given the sun irradiance rg(t), the output power of
a PV unit g at time t can be modeled as [15]:

pg(t) = σgAgrg(t),∀t ∈ T , (1)

where σg is the efficiency and Ag is the PV area.
2) WT: Given the wind speed v(t), the output power of a

WT unit g at time t can be approximately modeled as [15]:

pg(t) =


pgr

v(t)−vgi
vgr−vgi , vgi ≤ v(t) ≤ vgr

pgr, vgr ≤ v(t) ≤ vgo
0, otherwise

,∀t ∈ T , (2)

where vgi is the cut-in wind speed, vgr is the rated wind speed,
vgo is the cut-off wind speed, and pgr is the rated output power.

3) Diesel: Diesel is dispatchable so its output power is a
variable with the following constraints:

0 ≤ pg(t) ≤ pmax
g ,∀t ∈ T , (3)

where pmax
g is the maximum output power.

For a given DG unit g ∈ G, its reactive power is bounded
by:

qmin
g ≤ qg(t) ≤ qmax

g ,∀t ∈ T , (4)

where qmin
g and qmax

g are the minimum and maximum reactive
power, respectively.

We model the diesel generation cost at each time t ∈ T
using a quadratic model [8]:

Cg(pg(t)) , αg (pg(t)∆t)
2

+ βgpg(t)∆t+ cg, (5)
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where αg , βg , and cg are positive constants.
Renewable DERs such as PVs and WTs are not dispatchable

and their output is dependant on the availability of the primary
sources (i.e., sun irradiance or wind). Therefore, forecasting
is required in order to consider them in the energy manage-
ment optimization. Methods for PV forecasting [16] and WT
forecasting [17] can be utilized.

C. DS Model

We consider batteries as the DS units in the microgrid. For a
given battery b ∈ B, we denote its complex power by sb(t) ,
pb(t) + iqb(t), where pb(t) is the active power (positive for
charging and negative for discharging) and qb(t) is the reactive
power. Let Eb(t) denote the energy stored in the battery at time
t. A given battery b ∈ B can be modeled by the following
constraints:

pmin
b ≤ pb(t) ≤ pmax

b ,∀t ∈ T , (6)

qmin
b ≤ qb(t) ≤ qmax

b ,∀t ∈ T , (7)
Eb(t+ 1) = Eb(t) + pb(t)∆t, ∀t ∈ T , (8)

Emin
b ≤ Eb(t) ≤ Emax

b ,∀t ∈ T , (9)
Eb(T ) ≥ Ee

b , (10)

where pmax
b is the maximum charging rate, −pmin

b is the
maximum discharging rate, qmin

b and qmax
b are the minimum

and maximum reactive power, respectively, Emin
b and Emax

b

are the minimum and maximum allowed energy stored in the
battery, respectively, and Ee

b is the minimum energy that the
battery should maintain at the end of the scheduling horizon.

The cost of operating a given battery b ∈ B is modelled as
[18]:

Cb(pb) , αb

∑
t∈T

pb(t)
2 − βb

T−2∑
t=0

pb(t+ 1)pb(t)

+ γb
∑
t∈T

(min(Eb(t)− δbEmax
b , 0))

2
+ cb,

(11)

where pb is the charging/discharging vector pb , (pb(t), t ∈
T ), αb, βb, γb, δb, and cb are positive constants.

The above function is convex when αb > βb. This cost
function captures the damages to the battery by the charging
and discharging operations. The three terms in the function
penalize the fast charging, the charging/discharging cycles, and
the deep discharging, respectively. We choose δb = 0.2.

D. Load Model

We consider a DSM in the microgrid, where the loads can
be shedded in response to the supply condition. For each load
l ∈ L, we denote its complex power by sl(t) , pl(t) + iql(t)
and it is bounded by:

pmin
l (t) ≤ pl(t) ≤ pmax

l (t),∀t ∈ T , (12)

qmin
l (t) ≤ ql(t) ≤ qmax

l (t),∀t ∈ T , (13)

where pmin
l (t) and pmax

l (t) are the minimum and maximum
active power, respectively, and qmin

l (t) and qmax
l (t) are the

minimum and maximum reactive power, respectively.

For each load l ∈ L, we define a demand vector denoted
by pl , (pl(t), t ∈ T ) and a cost function Cl(pl) which
measures the dissatisfaction of the customer in the DSM using
the demand schedule pl. The cost function is dependent on the
shedded load and can be defined as:

Cl(pl) ,
∑
t∈T

αl(pl(t)− pfl (t))2 + cl, (14)

where pfl (t) is the forecasted load and αl and cl are positive
constants.

Note that we consider only load shedding here. Our model
can be easily extended to include load shifting and detailed
load models (for example, the appliance models in [18]).

E. Distribution Network Model
A distribution network can be modeled as a connected graph
G = (N , E), where each node i ∈ N represents a bus and each
link in E represents a branch (line or transformer). We denote
a link by (i, j) ∈ E . Power distribution networks are typically
radial and the graph G becomes a tree for radial distribution
systems. We index the buses in N by i = 0, 1, . . . , n, and bus
0 denotes the feeder which has a fixed voltage and flexible
power injection.

For each link (i, j) ∈ E , let zij , rij + ixi,j be the complex
impedance of the branch, Iij(t) be complex current from buses
i to j, and Sij(t) , Pij(t) + iQij(t) be the complex power
flowing from buses i to j.

For each bus i ∈ N , let Vi(t) be the complex voltage at
bus i and si(t) , pi(t) + iqi(t) be the net load which is the
load minus the generation at bus i. Each bus i ∈ N \ {0} is
connected to a subset of DG units Gi, DS units Bi, and loads
Li. The net load at each bus i satisfies:

si(t) = sli(t) + sbi(t)− sgi(t), ∀i ∈ N \ {0},∀t ∈ T , (15)

where sli(t) ,
∑

l∈Li
sl(t), sbi(t) ,

∑
b∈Bi

sb(t), and sgi ,∑
g∈Gi sg(t).
The steady-state power flows in a given distribution network

G can be modeled using the branch flow model [19]: ∀(i, j) ∈
E ,∀t ∈ T ,

pj(t) = Pij(t)− rij`ij(t)−
∑

k:(j,k)∈E

Pjk(t), (16)

qj(t) =Qij(t)− xij`ij(t)−
∑

k:(j,k)∈E

Qjk(t), (17)

vj(t) = vi(t)− 2 (rijPij(t) + xijQij(t)) + (r2ij + x2ij)`ij(t),

(18)

`ij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
, (19)

where `ij(t) , |Iij(t)|2 and vi(t) , |Vi(t)|2.
Equations (16)–(19) define a system of equations in

the variables (P(t),Q(t),v(t), l(t), s(t)), where P(t) ,
(Pij(t), (i, j) ∈ E), Q(t) , (Qij(t), (i, j) ∈ E), v(t) ,
(vi(t), i ∈ N \ {0}), l(t) , (`ij(t), (i, j) ∈ E), and
s(t) , (si(t), i ∈ N \ {0}). The phase angles of the voltages
and the currents are not included. But they can be uniquely
determined for radial systems [19].

3



To appear in IEEE SmartGridComm, Venice, Italy, 3-6 Nov. 2014

F. Energy Management

We consider the voltage tolerance constraints in the micro-
grid:

V min
i ≤ |Vi(t)| ≤ V max

i , ∀i ∈ N \ {0},∀t ∈ T , (20)

where V min
i and V max

i correspond to the minimum and
maximum allowed voltages, respectively.

The net power injected to the microgrid from the main grid
is given by:

s0(t) =
∑

j:(0,j)∈E

s0j(t),∀t ∈ T . (21)

If the microgrid is operated in islanded mode, then s0(t) =
0. If the microgrid is operated in grid-connected mode, then
s0(t) is the net complex power traded between the microgrid
and the main grid.

We model the cost of energy purchase from the main grid
as:

C0(t, p0(t)) , ρ(t)p0(t)∆t, (22)

where ρ(t) is the market energy price. Note that p0(t) can be
negative, meaning that the microgrid can sell its surplus power
to the main grid.

The objective of the energy management in the microgrid
is to (i) minimize the cost of generation, the cost of energy
storage, and the cost of energy purchase from the main grid,
and (ii) minimize the dissatisfactions of the customers in the
DSM, and (iii) minimize the power losses subject to the DER
constraints, the load constraints, the power flow constraints,
and the system operational constraints.

We define P , (P(t), t ∈ T ), Q , (Q(t), t ∈ T ),
v , (v(t), t ∈ T ), l , (l(t), t ∈ T ), sg , (sg(t), t ∈ T ),
sb , (sb(t), t ∈ T ), sl , (sl(t), t ∈ T ), s , (sg, sb, sl, g ∈
G, b ∈ B, l ∈ L), and Cg(pg) ,

∑
t∈T Cg(pg(t)). The energy

management in the microgrid can be formulated as an OPF
problem:

OPF:

min
P,Q,v,l,s

ξg
∑
g∈G

Cg(pg) + ξb
∑
b∈B

Cb(pb) + ξl
∑
l∈L

Cl(pl)

+ξ0
∑
t∈T

C0(t, p0(t)) + ξp
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (1)− (4), (6)− (10), (12), (13), (15)− (21),

where ξg , ξb, ξl, ξ0, and ξp are the parameters to trade off
among different cost minimizations.

III. DISTRIBUTED EMS

The previous OPF problem is non-convex due to the
quadratic equality constraint in (19) and is NP-hard to solve
in general [10]. We therefore relax them to inequalities:

`ij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, ∀(i, j) ∈ E ,∀t ∈ T . (23)

We then consider the following convex relaxation of OPF:

OPF-r:

min
P,Q,v,l,s

ξg
∑
g∈G

Cg(pg) + ξb
∑
b∈B

Cb(pb) + ξl
∑
l∈L

Cl(pl)

+ξ0
∑
t∈T

C0(t, p0(t)) + ξp
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (1)− (4), (6)− (10), (12), (13), (15)− (18),

(20)− (21), (23).

If the equality in (23) is attained in the solution to OPF-r, then
it is also an optimal solution to OPF. The sufficient conditions
under which the relaxation is exact have been exploited in
previous works [12]–[14]. In this paper, we assume that the
sufficient conditions specified in [14] hold for the microgrid
and thus we focus on solving the OPF-r problem.

The above OPF-r problem is a centralized optimization
problem. In order to design an efficient, scalable, and privacy-
preserving EMS, we propose a distributed algorithm to solve
the OPF-r problem using the predictor corrector proximal
multiplier (PCPM) algorithm [20].

Initially set k ← 0. The LCs of the DERs and loads set
their initial schedules randomly and communicate them to the
MGCC. In the meantime, the MGCC randomly chooses the
initial ski (t) , pki (t) + iqki (t) and two virtual control signals
{µk

i (t)}t∈T , {λki (t)}t∈T for each bus i ∈ N \ {0}.
At the beginning of the k-th step, the MGCC

sends two control signals µ̂k
i (t) , µk

i (t) +
γ
(
pkli(t) + pkbi(t)− pkgi(t)− pki (t)

)
and λ̂ki (t) ,

λki (t) + γ
(
qkli(t) + qkbi(t)− qkgi(t)− qki (t)

)
to the LCs

of the DERs and the loads connected to bus i, where γ is a
positive constant. Then,
• The LC of each DG unit solves the following problem:

EMS-LC(DG):

min
sg

ξgCg(pg) + (µ̂k
i )Tpg + (λ̂k

i )Tqg

+
1

2γ
||pg − pk

g ||2 +
1

2γ
||qg − qk

g ||2

s.t. (1)− (4),

where µ̂k
i , (µ̂k

i (t), t ∈ T ) and λ̂k
i , (λ̂ki (t), t ∈ T ).

The optimal s∗g is set as sk+1
g .

• The LC of each DS unit solves the following problem:
EMS-LC(DS):

min
sb

ξbCb(pb) + (µ̂k
i )Tpb + (λ̂k

i )Tqb

+
1

2γ
||pb − pk

b ||2 +
1

2γ
||qb − qk

b ||2

s.t. (6)− (10).

The optimal s∗b is set as sk+1
b .

• The LC of each load solves the following problem:
EMS-LC(Load):

min
sl

ξlCl(pl) + (µ̂k
i )Tpl + (λ̂k

i )Tql

+
1

2γ
||pl − pk

l ||2 +
1

2γ
||ql − qk

l ||2

s.t. (12), (13).
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Algorithm 1 - The Proposed Distributed EMS.
1: initialization k ← 0. The LCs set the initial schedules randomly

and return them to the MGCC. The MGCC sets the initial µk
i (t),

λk
i (t) and the initial ski (t) randomly.

2: repeat
3: The MGCC updates µ̂k

i (t) and λ̂k
i (t) and sends two control

signals µ̂k
i and λ̂k

i to the LCs connected to bus i.
4: The LC at each DER and each load calculates a new schedule

by solving the corresponding EMS-LC problem.
5: The MGCC computes a new sk+1(t) for each time t ∈ T by

solving the EMS-MGCC problem.
6: The LC communicates the new schedule to the MGCC.
7: The MGCC updates µk+1

i (t) and λk+1
i (t).

8: k ← k + 1.
9: until convergence

The optimal s∗l is set as sk+1
l .

• The MGCC solves the following problem for each time
t ∈ T :
EMS-MGCC:

min
P(t),Q(t),

v(t), l(t), s(t)

ξ0C0(t, p0(t)) + ξp
∑

(i,j)∈E

rij`ij(t)

−(µ̂k(t))Tp(t)− (λ̂k(t))Tq(t)

+
1

2γ
||p(t)− pk(t)||2 +

1

2γ
||q(t)− qk(t)||2

s.t. (16)− (18), (20)− (21), (23),

where µ̂k(t) , (µ̂k
i (t), i ∈ N \ {0}) and λ̂k(t) ,

(λ̂ki (t), i ∈ N \{0}). The optimal s∗(t) is set as sk+1(t).
At the end of the k-th step, the LCs communi-

cate their new schedules sk+1
l , sk+1

g , and sk+1
b to the

MGCC and the MGCC updates µk+1
i (t) , µk

i (t) +
γ
(
pk+1
li (t) + pk+1

bi (t)− pk+1
gi (t)− pk+1

i (t)
)

and λk+1
i (t) ,

λki (t)+γ
(
qk+1
li (t) + qk+1

bi (t)− qk+1
gi (t)− qk+1

i (t)
)

for all i ∈
N \ {0} and all t ∈ T . Set k ← k+ 1, and repeat the process
until convergence.

When γ is small enough, the above algorithm will converge
to the optimal solution of OPF-r which is also the optimal
solution of OPF and

(
pkli(t) + pkbi(t)− pkgi(t)− pki (t)

)
and(

qkli(t) + qkbi(t)− qkgi(t)− qki (t)
)

will converge to zero [20].
In the proposed distributed EMS, the private information of

the DERs and the loads is stored at the LC where the EMS-LC
problem is solved locally. The MGCC solves the EMS-MGCC
problem using the system information, including the topology,
the power losses, etc. The information exchanged between the
MGCC and the LCs include only the control signals and the
schedules. Therefore, the privacy of the DERs (i.e., production
costs and constraints) and the loads (i.e., customer preferences
and constraints) are both preserved by the proposed EMS.

IV. CASE STUDY

As one demonstration, we apply the proposed EMS to a
real microgrid in Guangdong Province, China as shown in Fig.
2. The numbers under the DERs and the loads in the figure
correspond to the maximum power. We set the cost function
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of the diesel generation as Cg(pg(t)) , 0.1(pg(t)∆t)2 +
0.7(pg(t)∆t). The capacity of the BESS Emax

b is 3MWh and
Emin

b is chosen to be 0.1MWh. We set Eb(0) = 1.5MWh
and Ee

b = 1.0MWh. The parameters in the cost function
of the battery are chosen as αb = 1, βb = 0.75, and
γb = 0.5. The cost function of the loads is chosen to be
Cl(pl) ,

∑
t∈T 10(pl(t)− pfl (t))2. We assume that the DSM

is able to shed a certain percentage of the forecasted load.
The maximum load shedding percentage is chosen randomly
from the range [0%, 20%]. Perfect forecasting of the PV, the
WT, and the loads is assumed. The day-ahead energy price
ρ(t) is given by Fig 3. The voltage tolerances are set to be
[0.95Vr, 1.05Vr], where Vr is the rated voltage. The parameters
in the algorithm are chosen as ξg = 1, ξb = 0.01, ξl = 1,
ξ0 = 1, ξp = 0.01, and γ = 0.5.

The day-ahead schedules produced by the proposed EMS
in islanded and grid-connected mode are shown in Fig. 4 and
Fig. 5, respectively. From Fig. 4, we can see that the total
diesel generation changes in the same trend as the total load
in islanded mode. This is because diesel is the main source of
generation in the microgird. We can also observe the charg-
ing/discharging cycles of the battery in the figure. The battery
is charged when the renewable power is high and discharged
when it is low, serving as the storage for renewables in the

5
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Fig. 4. The output schedules in islanded mode.
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Fig. 5. The output schedules in grid-connected mode.

microgrid. By comparing Fig. 4 with Fig. 5, it can be easily
seen that the total diesel generation is decreased significantly
in grid-connected mode as the microgrid can import energy
from the main grid. The battery in grid-connected mode is the
storage for not only renewables but also the cheap power from
the main grid. It is also charged when the energy price is low
and discharged when the energy price is high, making profits
for the microgrid.

Fig. 6 shows the value of the objective function over
iterations at t = 10 in grid-connected mode. We can see that
our proposed algorithm converges fast. For the simulations, we
also verify that the solution to the centralized OPF-r problem
is the same as the solution of the distributed algorithm. We
further verify that the equality in (23) is attained in the optimal
solution to OPF-r, i.e., OPF-r is an exact relaxation of OPF.

V. CONCLUSIONS

In this paper, we propose a distributed EMS for the optimal
operation of microgrids. Compared with the existing dis-
tributed approaches, our proposed EMS considers the underly-
ing power distribution network and the associated constraints.
Specifically, we formulate microgrid energy management as
an OPF problem and propose a distributed EMS where the
MGCC and the LCs jointly compute an optimal schedule.
As one demonstration, we apply the proposed EMS to a
real microgrid in China. The simulation results show that the
proposed EMS is effective in both islanded and grid-connected
mode and the proposed algorithm converges fast.
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