
Accepted to IEEE International Conference on Smart Grid Communications, Nov. 2012.

Resource Centric Security to Protect Customer
Energy Information in the Smart Grid

Eun-Kyu Lee, Rajit Gadh, and Mario Gerla
University of California, Los Angeles, Los Angeles, CA, USA

eklee@cs.ucla.edu, gadh@ucla.edu, gerla@cs.ucla.edu

Abstract—From the customer domain perspective, interopera-
tion implies that external systems are able to control customer’s
energy resources as well as to read energy-related information.
These two types of accesses to an energy resource affect the oper-
ation of the customer domain differently. However, most existing
security mechanisms were designed at individual resource level
and cannot efficiently handle such fine-grained access. To resolve
the issue of fine granularity, this paper proposes a new security
mechanism, Resource Centric Security, that leverages the concept
of a filesystem Access Control List. Three privileges of read, write,
and execute are defined on each energy resource, and a set of
attributes is assigned to each privilege. Each external user also
maintains his own set of attributes. He can access the privilege
only if his attribute set matches the privilege’s set. In this way,
the user may receive permission to read data of a resource but
not to invoke operations. We have implemented the proposed
scheme on a real testbed and have run experiments. The results
and following analysis discover that our scheme can provide a
proper level of data protection with reasonable overhead.

I. INTRODUCTION

Interoperation is the most important keyword in smart grid.
To achieve the customer domain interoperability, National
Institute of Standards and Technology (NIST) conceptually
defines Energy Service Interface (ESI), a communication in-
terface that is responsible for transmitting customer energy
data at the domain boundary [9]. Standardization efforts have
been developing standard ways of how to represent resource
data and how to expose internal information. More specifically,
new data models define energy resources and related services
as objects. That is, each resource, as an object, maintains a
set of values representing its status and operations actuating
its behaviors. Then, the external system accesses the object
via web service interfaces implemented in ESI; it controls the
customer’s energy resources as well as to reads energy-related
information.

One interesting property in the interaction model is a
clear distinction between reading data and invoking operations
within an object, i.e., “fine granularity of object access”. The
property is especially highlighted in the smart grid context
because two accesses affect the operation of the customer
domain differently. For instance, leakage of customer data
violates privacy policy while an abuse of control capabil-
ity can harm the customer directly. Therefore, the security
mechanism at the ESI must be able to understand the dif-
ference. Unfortunately, however, few security schemes under
the standardization efforts address this issue. Furthermore,
as more energy objects are added to the customer domain
and the domain interconnects with various external systems,
the interactions become extremely complicated. But, existing

security schemes, relying prior knowledge of user list and
database, cannot handle the complexity in an efficient way:
“They do not scale”.

To solve the problems, we propose a new security mech-
anism, Resource Centric Security (RCSec), that provides an
access control and data encryption. To address the fine granu-
larity issue, RCSec leverages the concept of a filesystem Ac-
cess Control List (ACL), in which each file (object) maintains
an entry that predefines three classes of user, group, and others
and determines which privileges (read, write, and execute)
are assigned to each class. In RCSec, we do access control
reversely. That is, we define three privileges within an energy
resource, and then assign a set of attributes1 to each privilege.
Unlike the ACL, RCSec does not predefine the classes in
advance. Instead, each accessing user must show a matched set
of attributes to obtain the privilege. In this way, the user may
receive permission to read data of a resource but not to invoke
operations. To address scalability, we implement RCSec by
exploiting Attribute Based Encryption (ABE). Given a set
of attributes assigned to each resource, associated data is
ABE encrypted using this set. Each external user maintains
a private key consisting of his own set of attributes, and is
able to decrypt the ciphertext only if his attribute set matches
the resource set. Unlike the ACL, each user in RCSec is
responsible for managing his own attributes. Thus, the resource
(or the ESI) is free from maintaining an access control entry
to perform the authorization process. This enables a security
system to cope with complex interactions as well as to operate
in a large-scale smart grid environment. We implement the
proposed RCSec on top of our testbed of Energy Management
and Control System (EMCS) and evaluate its performance
in terms of overhead. Experimental results discover that the
performance of the proposed scheme relies on underlying
encryption algorithm.

The rest of the paper is organized as follows. Section II
reviews standardization efforts that develop data and service
models in the customer domain and identifies new challenges
of security. Section III describes the proposed RCSec scheme
consisting of encryption, privilege assignment, and authoriza-
tion protocol. In Section IV, we illustrate our implementation,
and the proposed scheme is evaluated with experimental
results. Finally, we conclude the paper in Section V.

1An attribute is a property that represents the resource. For instance, an
LED at an office 127 may have two attributes “LED” and “OF-127”.

1

II. DATA MODEL AND ENERGY SERVICE INTERFACE

A. Handling Heterogeneity for Interoperability

The customer domain is a primary energy consumer, and po-
tential inclusion of Electric Vehicle (EV) [13] and Distributed
Energy Resources (DER) will enable it to store and generate
power too. Thus, interoperation with the domain is essential
in smart grid. However, as a customer domain system has
been implemented with proprietary data and service models,
a seamless interoperation still remains a non-trivial challenge
[12]. To cope with the issue, several standardization efforts are
under development.

First, customer data must be represented in a standard
form. A simple proprietary format may be helpful for the
performance of individual system. But, the customer domain
consists of heterogeneous devices and networks that generate
different types of data. It is impossible that an external system
handles all the unstructured information. To overcome the
difficulty, development of common data models have been
discussed. Standardization efforts touch this issue including
Facility Smart Grid Information Model (FSGIM) [1], ISO/IEC
15045, Building Automation and Control Networks (BAC-
net)/ISO 16484-5 [2], Open Building Information eXchange
(oBIX) [5], ZigBee Smart Energy Profile (SEP) [8], and OPC
Unified Architecture [6].

Second, standardized customer data must be exchanged in
an interoperable manner. In an inter-domain service model, the
ESI transmits data of customer energy services, e.g., energy
usage measurement, remote load control, and monitoring and
control of distributed generation. It is also responsible for
interoperation. To this end, the ESI accepts external signals,
e.g., a command message to control customer energy assets,
as well as to exposes the customer energy data to external
systems in a standard way. Several standardization organiza-
tions are developing the interoperable service models: Energy
Interoperation (EI) [3], Energy Market Information Exchange
(EMIX) [4], Open Automated Demand Response (OpenADR)
[15], and Energy Services Provider Interface (ESPI) [7].

B. Observation

The standardization efforts discussed above show three
interesting characteristics. First, eXtensible Markup Language
(XML) is used for data representation. Data format in BACnet
and oBIX is initially defined with XML, and existing KNX is
also mapped to XML data format [14]. Especially, the extensi-
ble nature of the user-defined XML schema is well leveraged
when mapping analog data set to digital representation. Most
service models also exploit XML technology. OpenADR and
EMIX define their specifications in the XML format.

Second, the way of defining customers’ energy data follows
an Object-Oriented (OO) design pattern. While some protocols
show this property in their schema design and UML (Unified
Modeling Language) representation, explicit examples can be
found in oBIX and BACnet. Given predefined primitive objects
such as “int” and “list”, an object in oBIX is modeled with
data types (values) and operations (method signatures). An
object can represent a physical device directly or represent a
collection of information related to a particular function.

Last, a web service technology is exploited for the inter-
domain transportation of the customer data. The OpenADR
specification defines two web service connections, SOAP
(Simple Object Access Protocol) and REST (Representational
State Transfer). EI utilizes web service technologies such as
WS-Calendar and WS-Addressing for additional functionality.
This sounds natural because the data is encoded in the XML
format. But, it is noted that the ESI benefits the most from web
services’ capability of machine-to-machine communications
in a distributed environment. This support is essential to the
automation of the smart grid system. For instance, dynamic
pricing programs requiring minimized human intervention can
be achieved effectively only by automation technology.

When looking at three characteristics, one notices that they
all together maximize the interoperability and automation.
That is, each energy resource distinguishes its values and
operations, and web services expose them by implementing
three actions to the resource: Read, Write, and Invoke. These
efforts are summarized as “fine granularity of data access and
load controls”. For instance, a user only reads energy usage
of an air conditioning system, while another user may turn off
the system to reduce power consumption during the on-peak
period.

C. Security on the Interface

Fine granularity is a new challenge of a security mechanism
at the ESI, because different actions induce different operation
consequences and indicate different levels of privacy pene-
tration. For instance, energy usage data is read to calculate
bills, but the read privilege can be misused to infer private
activities of the residents. The energy assets can be configured
to perform an automated demand response strategy. However,
if they are controlled unfavorably, the actions would have a
detrimental impact on the activities. If an adversary abuses the
control privilege, and sets to maximize energy loads during
the peak, the reliability of smart grid would be seriously
threatened. To avoid these potential problems, the owner of
the energy assets wants to permit utilities to read parts of data
and service providers to control contracted energy loads only,
while he has a full control over his assets.

Current security schemes being considered under standard-
ization efforts, however, cannot support the same level of gran-
ularity efficiently. The ESI or the EMCS authenticates users
using its own database of ID-password sets and authorizes
them with a coarse-grained rule. This way, a user would have a
full control over a group of energy resources at once. However,
the owner may not want the user to have excessive rights to
access the resources. He would like to apply the principle of
least privilege so that the user is given minimum permission
that are essential to that user’s work. Given the requirement
of fine granularity of new data and service models in the
customer domain, these schemes cannot realize the principle in
an effective way. Moreover, the requirement gets greatly com-
plicated, as more energy resources are added to the customer
domain, and more external users are connected the domain. To
cope with the increasing complexity of interactions, existing
schemes must manage a volume of user lists and authorization
rules, and develop corresponding enforcement mechanisms,

AND	

Service	
Provider	 Utility	

OR	

EV	 Read	

AND	

*	 Kevin,	 {Utility,	 Thermostat,	 EV,	 Read,	 Write}	
*	 Sara,	 {SP,	 Thermostat,	 Lighting,	 Heater,	 Read}	 	

Fig. 1. An access policy tree is created when Alice (owner) encrypts data.
Two users, Kevin and Sara, have own sets of attributes.

which causes additional overhead to them. Thus, they cannot
easily scale up in a large-scale, distributed smart grid network.
To overcome the challenges, we propose a Resource Centric
Security (RCSec) approach that takes the concept of data and
service model into consideration.

III. RESOURCE CENTRIC SECURITY

Based on our observation of abstraction level, the proposed
RCSec realizes a fine-grained, scalable security mechanism
through encryption, privilege assignment, and authorization.

A. Encryption
To achieve confidentiality, RCSec leverages the concept

and implementation of Ciphertext-Policy Attribute-Based En-
cryption (CP-ABE) that encrypts data using user attributes
[10]. CP-ABE realizes the secret sharing scheme [17] using
bilinear map based Pairing-Based Cryptography (PBC). More
specifically, each user is assigned a set of shares (attributes),
and a data sender encrypts data using an open key and an ar-
bitrary set of attributes. The encryptor creates an access policy
tree, representing a Boolean formula defining the combination
of attributes in the ciphertext. If a user presents a proper
credential, i.e., any combination of his attributes satisfies the
tree, he recovers the secret and is authorized to access the
data. To make the tree secret, CP-ABE exploits a polynomial
interpolation technique that guarantees information theoretic
security. To prevent collusion attacks, an authority assigns a
random number to each user whose attributes are also tied
with the number.

Fig. 1 illustrates an example of an access policy tree that
consists of two types of Boolean logic gates and four attributes
at the leaf position. Two users, Kevin and Sara, have 5
attributes in their private keys. A decryption process begins
from the leaves by matching their attributes, and each gate
returns true to its parent if children satisfy the logic. If the
root returns true, then the user recovers data successfully. In
this way, Kevin accesses Alice’s data, but Sara cannot.

B. Privilege Assignment
Each attribute represents a state of permission and does

not relate to other attributes. Suppose that Kevin in Fig. 1
is permitted to read and write the thermostat data, but only
to read the EV data. But, his attributes indicate his right to
write the EV data. This happens mainly due to the discrepancy
between the concept of attribute and an object model. To
exploit the attributes in the resource centric model at the ESI,
we apply a filesystem ACL that has been used in modern
operating systems. In ACL, each object (e.g., a file in a Unix

OR	

Room1	 	
≥	 1100	

Room1	 	
=	 1000	 	

Smartmeter3	
≥	 100	 	

AND	

*	 Kevin,	 {Utility,	 Room1	 =	 1101,	 Room2	 =	 1000,	 EV	 =	 101}	
*	 Sara,	 {SP,	 Room1	 =	 1000,	 Smartmeter4	 =	 111}	 	

Fig. 2. Each attribute in the access policy tree is assigned privilege. Kevin,
having 4 attributes, only satisfies the tree and accesses the object Smartmeter3.

system) maintains own Access Control Entry (ACE), and a
3-digit code represents privilege to access the object - a user
can read from, write to, or execute the object.

In RCSec, each object maps to an attribute with 3-digit
privilege level. For instance, an object Smartmeter can be
represented as an attribute “Smartmeter = 111”. The first digit
indicates permission of Read, and the following two digits
indicate the rights of Write and Invoke, respectively. Thus,
when a user has an attribute “Smartmeter = 100” and tries to
access the object, it is permitted to read energy usage informa-
tion but cannot turn on/off the device. In our implementation,
the ESI encrypts an object data with attributes in which
appropriate privileges are assigned. The privilege assignment
allows inequality, e.g., “Smartmeter ≥ 100”, in the access
policy tree, whereas this is not used in user attributes. The
inequality expression significantly simplifies the assignment
rule. For instance, if a user has an attribute “Smartmeter =
111”, he is still able to satisfy the inequality condition and
to read data. In this way, the expression is capable of testing
multiple privileged attributes at once.

The proposed assignment rule also supports hierarchical
types of objects. Say, a building has more than one room,
and several Smartmeters are deployed in each room. In this
hierarchy, each room is also identified as an object that does
not provide energy information directly. Instead, the corre-
sponding XML document provides meta data about the object
and access information to the sub objects of Smartmeters. For
such resources, we assign privilege with 4-digit code. The
first digit represents permission to access the object itself.
An example is “Room1 = 1000”. The last three digits have
the same semantics to the 3-digit code, but with different
scope of permission. For instance, “Room1 = 1100” implies
that the user can read all the data produced in Room 1. This
implies that the “Room1” attribute is more inclusive than the
“Smartmeter” attribute and provides higher level of privilege.
This rule makes it much easier to manage attributes. When
there are 10 Smartmeters in the room, a user can use one
attribute instead of ten attributes to access them. Fig. 2 depicts
an access policy tree in which privilege is assigned according
to the proposed rule.

C. Authorization Protocol

A user accesses an object in three ways: Read, Write, and
Invoke. Authorization for the Read is performed at a user side
with his own private key. Both Write and Invoke, on the other
hand, occur at the customer domain upon receiving requests
from the user. The ESI is not allowed to have the user’s private

key that is required for the authorization2. Thus, we design an
authorization protocol leveraging our encryption and privilege
assignment.

The authorization for Write and Invoke follows almost
the same procedure, and the followings describe 4 steps of
procedure for the Invoke operation. We use below notations.
• u, v are two end systems. In our example, they are an

user and an ESI, respectively.
• u→ v : M denotes that u sends a message M to v
• M1|M2 is the concatenation of messages M1 and M2

• H(M) is hash of M (e.g., SHA-1).
• Tx is an access policy tree containing an attribute x.
• {M}T is attribute based encryption with a tree T.
• [M]K is symmetric key encryption with a key K (e.g.,

AES).
• N is a random nonce value.

INVOKE REQUEST (IR). A user u generates and concate-
nates a request message Mreq and a nonce Nu. Mreq includes
information about an operation that u requests v to execute.
The concatenated data is then encrypted with an access policy
tree Tbruin, where bruin denotes the name of v, i.e., the ESI.
Note that Tbruin does not imply that the tree has only one
attribute. We assume that Certificate Authority (CA) assigns
the bruin attribute only to v, and the attribute is not forged or
stolen. Thus, v is only able to satisfy the tree. The ciphertext
MIR is then delivered to v as follows.

u→ v : MIR, MIR = {Nu|Mreq}Tbruin

AUTHORIZATION REQUEST (AR). Once v receives and
decrypts MIR, it obtains Nu and Mreq. And it generates a
nonce Nv . As mentioned, v does not manage users list or
store any state information of external requests to achieve
a lightweight and stateless distributed system. To this end,
it creates and sends u a message Mop that stores the state
information. Mop is not intended to expose to u but expected
to return back to execute the operation later. Thus, v encrypts
the message with a key Kuv and creates a new message Mx as
below. The key is created using both v’s private pseudonym
PSv and Nu. PSv saves v’s burden to remember u, while
Kuv is still related to u through Nu.

Mx = [Mop]Kuv

Mop = (Nv|Mreq|Ti), Kuv = H(Nu)⊕H(PSv)

where ⊕ denotes an XOR operation. Ti represents the time
when Mop is generated and is used to protect communication
against replay attacks. v also encrypts Nv with an access
policy tree Tinvoke and creates a message, My = {Nv}Tinvoke

.
This is to challenge u if it is qualified or not. Two messages
together are now encrypted with a key (Nu + 1) and delivered
to u as follows.

v → u : MAR, MAR = [Mx|My](Nu+1)

AUTHORIZATION ACK (AA). Upon receiving and de-
crypting MAR with own nonce Nu, u obtains Mx and My .

2In addition, RCSec pursues a pure distributed system in which the ESI
never maintains any database of user list, whereas conventional authorization
schemes rely on ACL stored in them for authorization.

It cannot decrypt Mx, instead returns back to v. u recovers a
nonce from My only if it satisfies the tree Tinvoke. Let N ′v be
the recovered nonce. u, then, collects three data, encrypts the
collection with Tbruin, and transmits the ciphertext MAA to v
as follows.

u→ v : MAA, MAA = {Mx|(Nu + 2)|(N ′v + 2)}Tbruin

INVOKE ACK (IA). After receiving and decrypting MAA,
v obtains Mx, Nu, and N ′v . Using Nu, it decrypts Mx and
obtains Nv , Ti, and Mreq. Then, the authorization confirms the
followings - (1) N ′v = Nv; and (2) Tc − Ti ≤ ∆, where Tc is
the current time at v, and ∆ denotes a timeout threshold. Once
confirmed, v executes the request, Mreq. An acknowledge
message Mack after the operation is encrypted and delivered
to u as follows.

v → u : MIA, MIA = [Mack](Nv+3)

D. Advantage
The RCSec scheme provides a few advantages. First, it

supports fine granularity. An object is treated separately with
distinguished attributes, and three request types for the object
are given different privileges. Furthermore, these concepts are
effectively implemented within the conceptual boundary of an
attribute. Second, RCSec is developed based on an encryption
algorithm. Thus, it inherently supports confidentiality and
helps guarantee customer privacy. Last, RCSec is scalable. It
does not require the ESI to maintain user information. Instead,
each user manages own privilege in the form of attributes.
Thus, RCSec can scale well even in a distributed system
environment.

IV. PERFORMANCE EVALUATION

To validate the proposed RCSec, we implement it within
our EMCS testbed. Developed on a server system running the
Eeebuntu distribution, it gathers energy data periodically from
various energy loads. Collected data is stored and managed
in the oBIX format. The EMCS also implements the ESI that
realizes HTTP-based web service communications, and RCSec
runs in the ESI. We omit the analysis of underlying encryption
algorithm due to space limitation. Instead, we refer [16] for
interested readers.

A. Implementation
1) oBIX: Following the OO paradigm, each object in oBIX

is modeled by a set of value objects like “str” and “bool” and a
set of op objects that define operations with input and output
objects. The object model also allows inheritance to model
complicated oBIX resources by means of a contract mecha-
nism. Realized by is object, it establishes the classic “is a”
relationship with overriding rules. oBIX supports lower level
of abstraction, which gives a huge flexibility. This benefits the
customer domain in that heterogeneous data formats must be
effectively represented in a common data model.

2) HTTP REST: In order to expose data to external do-
mains, the ESI implements the web service of the oBIX
specification - HTTP binding in the Representational State
Transfer (REST) style. Providing a resource centric access
instead of method centric one, REST utilizes a small set of

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

1	 5	 10	 15	 20	 25	 30	

Pr
oc
es
si
ng
	 +
m
e	
[m

s]
	

Number	 of	 a4ributes	

Encryp.on	

Decryp.on	

Fig. 3. Data processing time [ms] for encryption and decryption in the
attribute based encryption.

verbs to transfer an object’s state via XML [11]. oBIX maps
three oBIX requests to HTTP methods: Read with GET, Write
with PUT, and Invoke with POST. Below oBIX document
represents a smart plug object, “plug1” in which the energy
load is controllable via two ways: Write and Invoke. To turn
it on or off, an external user sends directly a PUT request
targeting at the connectLoad object within the same URI or
sends a POST request to the hyperlinked URI targeting at the
operation object, controlLoad.

<obj href="http://myPAS/zigbee/plug1/">
<str name="deviceName" val="BSPE12SOYZM43001"/>
<bool name="connectLoad" writable="true" val="true

"/>
<op name="controlLoad" href="control" in="

obix:WritePointIn" out="obix:Point"/>
<ref name="power" href="power"/>

</obj>

3) Access Control and Encryption: The proposed RCSec
is implemented in the ESI. In particular, it encrypts oBIX
data and the authorization works with three oBIX requests,
i.e., in the application layer. To implement details of RCSec,
we take algorithms approved in the NISTIR 7628 guideline
[18]. More specifically, we use AES-256 for the symmetric
key encryption, SHA-256 for the hash function, and SHA-
1 based random number generator to generate the nonce
value. In addition, we leverage CP-ABE for attribute based
encryption. Base64 encoding transforms the encrypted bytes
to printable ASCII strings so that data is delivered in the
XML form over the web. In order to minimize the overhead
of encryption processing and to improve data access time,
popular data is encrypted in advance and stored in cache,
while MySQL based database management system manages
all the data. Therefore, Read request is handled quickly with
cached data. Whereas, both Write and Invoke requests require
the authorization process, which introduces processing delay.

B. Experiments

Most security algorithms protect user information at the
cost of additional overhead and latency. This is inevitable
because stronger algorithms usually come with expensive data
processing. To evaluate the proposed scheme, therefore, we
examine the level of overhead in details. All the experiments
are conducted by two computers that run with 2.2 GHz Intel
Core 2 Duo processor and 2 GB memory.

0%	

20%	

40%	

60%	

80%	

100%	

10	 200	 400	 600	 800	 1000	

M
es
sa
ge
	 o
ve
rh
ea
d	

Data	 size	 [KB]	

Base64	 encoding	 Encryp7on	 Data	

Fig. 4. Message overhead - a breakdown of a message in terms of volume.
Num. attribute (NA) 1 5 10 15 20 25 30
Msg. overhead [KB] 2 8 17 26 35 43 52

TABLE I
MESSAGE OVERHEAD WITH VARYING NUMBERS OF ATTRIBUTES.

1) Encryption and Decryption: The first experiment as-
sesses performance of the attribute based encryption which
is the most expensive portion in RCSec. In this experiment,
we vary the number of attributes (NA) used in the algorithm,
and then measure processing time to encrypt and decrypt data
that is 200 KB in size. As illustrated in Fig. 3, the processing
time grows in proportional to NA. Encryption is much more
sensitive to NA than decryption. When NA=30, encryption
is around 8 times slower than decryption. This is mainly
attributed to difference of mathematical complexity within
the encryption and decryption. On the other hand, another
experiment reveals that the data size VD barely affects the
processing time although the results are omitted due to space
limitation. From the results, we reason that the encryption part
dominates the processing overhead of the encryption, and NA

used in encryption primarily influences the overhead.
2) Message Overhead: Having the impact of the attributes

on the processing time in mind, next experiments investigate
how the attributes affect the message volume. In addition to
an encrypted data, a message to be transmitted contains meta
information about the access policy tree and corresponding
mathematical expressions. Table I shows extra volumes in-
creased with varying numbers of attributes. We set VD=200
KB. The result indicates that adding one attribute in encryption
expands the entire message size by 1.75 KB on average. This
way, the message overhead becomes 52 KB when NA=30.

However, we note that the message overhead does not relate
to VD. That is, the overhead remains 17 KB with 10 attributes
even when the algorithm encrypts data of 1000 KB. This
property allows us to calculate the overall message overhead.
For instance, Fig. 4 draws a breakdown of a message in
terms of volume, where we vary VD while fixing NA=10.
The figure also shows the overhead due to the Base64 en-
coding, which accounts for 25% all the time. Because of the
fixed size of 17 KB, the encryption overhead accounts for
47.2% when VD=10KB. As VD increases, its portion decreases
dramatically: 3.1% for 400 KB and 1.6% for 800 KB. The
results again reveal noticeable influence of the attributes on
the proposed security scheme.

3) Latency on Authorization: The proposed authorization
protocol comprises of 4 steps (IR, AR, AA, and IA), each

0	

500	

1000	

1500	

2000	

2500	

3000	

IR	 AR	 AA	 IA	

Pr
oc
es
si
ng
	 +
m
e	
[m

s]
	

Steps	 in	 authoriza+on	 protcol	

5	 10	 15	 20	

Fig. 5. Processing time of individual step in authorization along with
increasing numbers of attributes.

of which involves different computational operations. This
experiment investigates the performance of the protocol by
showing the breakdown of the processing time of each step. In
our scenario, a user (client) requests a list of energy usage data
for specified period to our EMCS (server) - i.e., oBIX history
service. The retrieved list data, 300 KB, is included in the
acknowledge message in the IA step (Mack). Four messages,
MIR, MAR, MAA, and MIA, are 5 KB, 24 KB, 5 KB, and
400 KB in size, respectively (see Section III-C for notations).
As the server is assumed to have unique attribute in its private
key, we can minimize the number of attributes in Tbruin (NAb)
for IR and AA. We set NAb = 2 in the experiments. NAi for
Tinvoke, on the other hand, can change along with security
policies, and our experiments vary the value from 5 to 20.
Note that the processing time measured includes latency to
generate and parse XML data.

Fig. 5 illustrates the results showing that AR dominates
the entire processing overhead, and its influence grows as
NAi increases. When NAi = 20, it accounts for 73% of the
whole overhead. The overhead of AR mainly comes from
the attribution base encryption, i.e., My . When looking at the
results from previous experiments together, the overhead of
My accounts for 94.3% in AR. The overhead of AA increases
slowly along with NAi - 434.6 ms when NAi = 5 and 618.6
ms when NAi = 20. Such growth is mainly attributed to
the decryption of My . Another major portion of overhead
in AA comes from encryption using Tbruin that generates
MAA. Unlike AR and AA, the overheads of IR and IA
barely change. IR encrypts data using Tbruin whose number
of attributes is 2 all the time. In IA, the algorithm involves
one attributed based decryption and one symmetric encryption,
which enables the processing time to keep below 120 ms. The
results together conclude that reducing NAi is very critical to
run RCSec in an efficient way. Note that our running system
currently uses 4∼8 attributes.

V. CONCLUSION

We have presented a novel security mechanism Resource
Centric Security that provides fine-grained, scalable access
control and encryption in the service interface of the customer
domain. To support fine granularity, it leverages the concept
of a filesystem access control list so that individual energy
resource maintains three privileges of read, write, and exe-
cute. Instead of having three predefined classes of accessing
users, RCSec dynamically assigns a set of attributes to each

privilege. And, an external user can only obtain permission to
each privilege by showing that his own attribute set matches
the resource’s set. To provide confidentiality, we implement
RCSec on top of attribute based encryption that encrypts
data using the assigned set of attributes. RCSec scales well
and fits to distributed smart grid environment because the
ESI works without any prior knowledge of user information.
The experimental results and following analysis discover that
RCSec can provide a proper level of abstracted data protection
with reasonable overhead. Developing a compact RCSec will
be an integral part of our future work.

ACKNOWLEDGMENT

This work has been sponsored in part by grant from the
EPRI/DOE - fund 20699, Smart Grid Regional Demonstration
Project.

REFERENCES

[1] ASHRAE Standard Project Committee 201 (SPC 201) Facil-
ity Smart Grid Information Model (FSGIM). http://spc201.
ashraepcs.org/standards.html.

[2] BACnet - A Data Communication Protocol for Building Au-
tomation and Control Networks. http://www.bacnet.org/.

[3] OASIS Energy Interoperation. http://www.oasis-open.org/
committees/tc home.php?wg abbrev=energyinterop.

[4] OASIS Energy Market Information Exchange (EMIX) v1.0.
http://docs.oasis-open.org/emix/emix/v1.0/emix-v1.0.html.

[5] oBIX - Open Building Information eXchange. http://www.obix.
org/.

[6] OPC Unified Architecture. http://www.opcfoundation.org/
Default.aspx/01 about/UA.asp?MID=AboutOPC.

[7] REQ.21 Energy Services Provider Interface (ESPI), North
American Energy Standards Board (NAESB). http://www.naesb.
org/ESPI Standards.asp.

[8] ZigBee Smart Energy 2.0. http://www.zigbee.org/Standards/
ZigBeeSmartEnergy/Version20Documents.aspx.

[9] NIST Framework and Roadmap for Smart Grid Interoperability
Standards, Release 2.0. Feb. 2012.

[10] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy
attribute-based encryption. In IEEE Symposium on Security and
Privacy, Oakland, USA, May 2007.

[11] R. Fielding and R. Taylor. Principled Design of the Modern
Web Architecture. ACM Transactions on Internet Technology,
2(2):115–150, 2002.

[12] R. Gadh. Convergence for the smart grid - on the technology
opportunities for future cyber-physical energy systems. In Work-
shop on New Research Directions for Future Cyber-Physical
Energy Systems, June 2009.

[13] S. Mal, A. Chattopadhyay, A. Yang, and R. Gadh. Electric
Vehicle Smart Charging and Vehicle-to-Grid Operation. Int’l
Journal of Parallel, Emergent and Distributed Systems, 27(3):1–
17, 2012.

[14] M. Neugschwandtner, G. Neugschwandtner, and W. Kastner.
Web Services in Building Automation: Mapping KNX to oBIX.
In IEEE Conference on Industrial Informatics, June 2007.

[15] Piette, M. Ann, G. Ghatikar, S. Kiliccote, E. Koch, D. Hennage,
P. Palensky, and C. McParland. Open Automated Demand Re-
sponse Communications Specification (Version 1.0). California
Energy Commission - PIER Program, CEC5002009063, 2009.

[16] M. Pirretti, P. Traynor, P. Mcdaniel, and B. Waters. Se-
cure Attribute-Based Systems. Journal of Computer Security,
18(5):799–837, 2010.

[17] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[18] Smart Grid Interoperability Panel - Cyber Security Working
Group. Introduction to NISTIR 7628 Guidelines for Smart Grid
Cyber Security. Sep. 2010.

