
To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

Abstract— This article describes the core cellphone application

algorithm which has been implemented for the prediction of
energy consumption at Electric Vehicle (EV) Charging Stations
at UCLA. For this interactive user application, the total time of
accessing database, processing the data and making the
prediction needs to be within a few seconds. We analyze three
relatively fast Machine Learning based time series prediction
algorithms and find that the Nearest Neighbor (NN) algorithm (k
Nearest Neighbor with k=1) shows better accuracy. Considering
the sparseness of the time series of the charging records, we then
modify the dissimilarity measure in the NN algorithm to improve
the accuracy and processing time. Two applications have been
designed on top of the proposed prediction algorithm: one
predicts the expected available energy at the station and the other
one predicts the expected charging finishing time. The total time,
including accessing the database, data processing, and prediction
is approximately one second for both applications. The
granularity of the prediction is one hour and the horizon is 24
hours; data have been collected from 15 charging stations.

Index Terms— Cellphone Applications, Electric Vehicles,
Kernel methods, Nearest Neighbor Searches, Prediction
Methods, Sparse time series.

I. INTRODUCTION
lectric Vehicles (EVs) (or Plug-in Hybrid Electric
Vehicles (PHEV)) will be an important part of the Smart

Grid. The big challenge for EVs is their charging within the
existing distribution system infrastructure. According to the
EV33 rule (33 miles driving range for a single charge [5]), the
minimum battery size in EVs varies from 8.6 kWh to 15.2
kWh [6]. Charging batteries with the aforementioned size will
take between four and eight hours in a Level 1 household
charger (120V, 16 A). As an alternative, EV owners can
charge their vehicle at their place of employment, provided
that the employer has installed the chargers in the parking lot.
Other than workplace parking lots, cities and private operators

This work has been sponsored in part by grant from the LADWP/DOE
fund 20699 & 20686, Smart Grid Regional Demonstration Project.

M. Majidpour, C. Qiu, P. Chu, and R. Gadh are with Smart Grid Energy
Research Center, University of California, Los Angeles 90095 USA
(emails:mostafam@ucla.edu)

H. R. Pota is with the School of Engineering & Information Technology,
The University of NSW, Canberra ACT 2610 Australia (e-mail:
h.pota@adfa.edu.au).

have invested in charging stations for public use. As of
October 2013, the number of these stations in the US has
reached 19,730 which is roughly a sixth of the number of gas
stations in the US [11]. Electric power has to be consumed
simultaneously upon generation. As a result, the EV charging
station needs to have a good idea of how many vehicles will
need charging at each moment. On the other hand, since a
reasonable amount of charging will take tens of minutes, it
would be useful for a customer to know when and how much
energy is expected to be available at a given charging station
in a given time window. Both the customer and moderator will
substantially benefit from an algorithm that can predict the
power consumption at charging stations.

With emerging smart phones, it would be beneficial to
customers if they could receive the prediction information on
their cellphone, giving them an estimate of the charging time.
This paper discusses prediction algorithms that can run in less
than a few seconds, so that EV users can query the system and
get the results in a reasonable time on their cellphones. To our
knowledge, our work is the first research that discusses fast
prediction of the available energy and/or expected charging
finishing time at the charging station for use in a cellphone
application. The data used in the algorithm is obtained from
the charging records. A charging record in this paper is a
datum that contains the start and end time of a charging
transaction as well as the total amount of received energy (in
kWh) by the EV. The charging records database consists of
the historical charging data for a given charging station.

The work described in this paper differs from other previous
works in literature: 1) we have used just one type of recorded
data, Charging Records, which only contains the start and end
of the charging transaction and the total amount (a scalar
value; not time dependent) of energy received in the charging
transaction rather than geographical or any driving habit
related data; 2) our predictions is at the charging station level
(not parking lot or the whole building level); 3) our method is
online and fast with the whole process taking about a second.
Indeed, the reason that we do not use other sources of data is
our speed requirement and the fact that adding more data will
slow the process.

The rest of this paper is organized as follows: Section II
provides a brief review of existing literature, Section III
formulates the problem, Section IV explains the methods that

Fast Prediction for Sparse Time Series:
Demand Forecast of EV Charging Stations for

Cell Phone Applications
Mostafa Majidpour, Student Member, IEEE, Charlie Qiu, Peter Chu, Rajit Gadh, Hemanshu R. Pota,

Member, IEEE

E

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

are evaluated in this paper in order to compare with the
proposed method. Section V reports and analyzes the result of
applying the algorithms on the University of California, Los
Angeles (UCLA) parking structures’ data. Section VI explains
the proposed algorithm via modifications to discussed
algorithms, Section VII talks about the implementation of the
cellphone applications using the proposed algorithm and
Section VIII provides the conclusion and future work.

II. LITERATURE REVIEW
Time series prediction (forecasting) methods predict the

future of a certain variable given its past history. There is a
rich literature on different methods of time series prediction
that has evolved from statistics, mathematics, computer
science, economics, and engineering [13]-[15]. Probably, the
most famous model in time series prediction is the ARIMA
model with Box-Jenkins approach [14] which has been used
widely in economics and statistics [15] and is considered to be
the traditional approach in time series prediction. Selecting the
correct parameters for the ARIMA model is not a trivial task,
and, depending on the approach, it might be time consuming.

Prediction algorithms are part of most of the modern smart
grid technologies [34] such as Photovoltaic systems [36],
Smart Buildings [32], and Wind Turbines [35]. Extensive
research has focused on EV charging algorithms and charging
station infrastructures [7]-[10], and, as a next step, EV related
research has started to utilize forecasting algorithms [16]-[22].
Some papers apply forecasting algorithms to EV driving
habits and predict the State of Charge (SOC) of a particular
EV and when it needs to be charged [17][18]. Authors in [16]
have applied Artificial Neural Network (ANN) forecasting
algorithms to predict the charging profile of the EV within the
Building Energy Management System (BEMS) in order to
improve the overall energy efficiency of the building.
Reference [19] and [20] discuss the prediction of the EV
charging profile while taking into account various sources of
data, such as vehicle driving/usage data. Authors in [21] and
[22] consider forecasting at the charging station level based on
the EV user classification and Monte Carlo simulations
method. Reference [33] discusses an energy management
system for EVs that takes advantage of prediction in different
levels through hierarchical Model Predictive Control.

As mentioned above, the aim of this work is to focus on
relatively fast time series forecasting algorithms in which the
whole process of prediction (including pre-processing) takes a
reasonably short amount of time for a user that sends
prediction-related queries from a cellphone. Machine Learning
(ML) based heuristic methods have been shown to provide a
good performance in forecasting [12]. Some of these methods
such as k-Nearest Neighbor (kNN) and weighted kNN
depending on the number of neighbors could be pretty fast.
However, the selection of parameters for these ML methods
still remains a challenge.

For our predictor application, we are interested in the ML
based algorithms that have low computation requirements and
are relatively faster. A brief introduction of these methods will
follow in Section IV.

III. PROBLEM FORMULATION
The objective is to predict the available energy in the next

24 hours at each charging station with a minimum time for
processing. Formally, we assume there is some function
relating future available energy and the past consumed energy:

𝐸 𝑡 = 𝑓 𝐸 𝑡 − 𝑖 , 𝜀 𝑡 𝑖 ∈ 1,2,… (2),
where 𝐸(𝑡) is the actual energy consumption at time t, 𝐸(𝑡) is
the prediction of the energy consumption at time t, 𝜀 𝑡 is the
set of all variables (such as noise) other than past energy
consumption records (𝐸 𝑡 − 𝑖) that 𝑓 might depend on.

As the usual practice in forecasting, we are interested to
find an estimation of 𝐸(𝑡) according to a particular
performance (or error) criteria. For the error measurement, we
have chosen Symmetric Mean Absolute Percentage Error
(SMAPE). For the day i, the SMAPE is defined as:

𝑆𝐴𝑀𝑃𝐸 𝑖 =
1
𝐻

𝐸 𝑡 − 𝐸 𝑡
𝐸 𝑡 + 𝐸 𝑡

×100,
!∈!"# !

 (2),

where 𝐻 is the horizon of prediction in a given day 𝐻(=24 in
this paper).

Since there is no access to future data in real life, the last
portion of the data (last 10% in this paper) is set aside as the
test set to evaluate the performance of the algorithm. Thus, our
goal is to find an algorithm that minimizes the error between
the actual value and its prediction in the test set. Note that the
test set is not used in either the parameter selection or training
phase.

We use the notation 𝐸 𝑡 as the vector of prediction for the
next 24 hours ending at t (Fig 1. a). Also, 𝑡! = {1,2,… ,𝑁!"}
and 𝑡! = {𝑁!" + 1,… ,𝑁} are the set of indices for the training
and test sets, respectively. Later on, in the parameter selection
phase, parts of the training set will be treated as the validation
set. The different methods used to select the validation set are
further explained in the parameter selection section.

Figure 1. a) energy consumption vector (E) for 24 hours , b) input-output

pairs and division of data into training and test sets, c) labeling inputs as x and
outputs as y.

IV. APPLIED ALGORITHMS
Four prediction algorithms have been briefly described

here. These algorithms were employed to compare and
demonstrate the effectiveness of the proposed approach. A

a)

b)

c)

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

k-Nearest Neighbor Algorithm
Inputs: 𝑥(𝑡!), 𝑦(𝑡!), 𝑥(𝑡!∗), 𝑘
Output: 𝑦(𝑡!∗)
1. for 𝑗 ∈ 𝑡!
2. 𝑑𝑖𝑠[𝑗] = ‖𝑥(𝑡!∗) − 𝑥(𝑗)‖
3. for 𝑖 ∈ {1,… , 𝑘}
4. 𝑖𝑑𝑥[𝑖] = index of 𝑖!! smallest(𝑑𝑖𝑠)
5. 𝑦(𝑡!∗) =

!
!
∑ 𝑦(𝑖𝑑𝑥[𝑖])!∈{!,…,!}

Lazy Learning Algorithm
Inputs: 𝑥(𝑡!), 𝑦(𝑡!), 𝑥(𝑡!∗), 𝑘!"#
Output: 𝑦(𝑡!∗)
1. for 𝑗 ∈ 𝑡!
2. 𝑑𝑖𝑠[𝑗] = ‖𝑥(𝑡!∗) − 𝑥(𝑗)‖
3. for 𝑖 ∈ {1,… , 𝑘!"#}
4. 𝑖𝑑𝑥[𝑖] = index of 𝑖!! smallest(𝑑𝑖𝑠)
4. for 𝑘 ∈ {2,… , 𝑘!"#}
5. 𝑦(𝑘) = !

!
∑ 𝑦(𝑖𝑑𝑥[𝑖])!∈{!,…,!}

6. Calculate 𝑒!""(𝑘) according to Eq. (7)
7. 𝑘∗ = arg (min! ∈{!,…,!!"#} 𝑒!""(𝑘))
8. 𝑦(𝑡!∗) = 𝑦(𝑘∗)

detailed description can be found in [25].

A. Historical Average
This algorithm is one of the simplest algorithms that is

sometimes referred to as naïve approach and is used only for
comparison with other methods. According to this approach,
the predicted charging energy in the future is the average of
the charging energy consumption in the past. Formally:

𝐸 𝑡 =
1
𝐷

𝐸(𝑡 − 24𝑑)
!

!!!

 (3),

where D is the depth of the averaging. For instance, the
predicted energy consumption for 3pm on the next day is
equal to the average of the energy consumed today,
yesterday…, and up to the past D days at 3pm. D is a
parameter that needs to be selected before the evaluation on
the test set.

B. K-Nearest Neighbor
This algorithm is a well-known algorithm in the machine

learning community [26]. Based on the k-Nearest Neighbor
(kNN) algorithm, each sample (training, test or validation) is
composed of input and output pairs. In our application, as seen
in Fig. 1. c, the output is the predicted energy consumption for
the next 24 hours:

𝑦 𝑡 = 𝐸 𝑡 (4),

and the input is the concatenation of the consumption records
for up to D previous days:
𝑥 𝑡 = {𝐸 𝑡 − 24 ,𝐸 𝑡 − 48 ,… ,𝐸 𝑡 − 24𝐷 } (5).

This concatenation repeats for all days: if there are N days
in the data set, there will be N-D+1 of these input-output pairs
(Fig 1.b). The total number of data points is 𝑛 = 24𝑁. Now, in
order to find an estimate for 𝑦(𝑡!∗) where 𝑡!∗ ∈ 𝑡! is an
instance of test set indices, first, the dissimilarity between
𝑥(𝑡!∗) and all other 𝑥(𝑡!) that belong to the training set is
computed. We have used the Euclidian distance as the
measure of dissimilarity here. After determining the k
closest 𝑥 𝑡! to 𝑥(𝑡!∗), the average of their corresponding
𝑦(𝑡!) is generated as 𝑦(𝑡!∗). In this algorithm, the parameter k
needs to be determined. Fig. 2 illustrates the algorithm where
𝑑𝑖𝑠[𝑗] refers to dissimilarity between 𝑥 𝑡!∗ and 𝑥 𝑗 .

Figure 2. k-Nearest Neighbor Algorithm.

C. Weighted k-Nearest Neighbor
Weighted kNN is based on the idea that closer points to the

query should contribute more to the output and in this way
improve the accuracy of the prediction compared to kNN [1].

This algorithm is very similar to the original kNN algorithm
with the exception that instead of averaging the k closest
training outputs (Fig. 2, step 5) their weighted average is used,
where the weights are a function of the dissimilarity between
input pairs. The weights are defined based on Dudani’s
weights [1] which seems to give better results compared to
other similar weight assigning methods according to both
literature [2] and our simulations. Thus, the following two
steps will substitute for Step 5 in Fig. 2:

𝑤! =
𝑑𝑖𝑠[𝑘 + 1] − 𝑑𝑖𝑠[𝑝]
𝑑𝑖𝑠[𝑘 + 1] − 𝑑𝑖𝑠[1]

 𝑝 = 1, . . , 𝑘

𝑦 𝑡!∗ =
1
𝑤!!∈!"#

𝑤!𝑦 𝑝
!∈!"#

(6),

(7).

D. Lazy Learning
Lazy Learning (LL) is a generic term which refers to

algorithms that postpone the learning until a query is
submitted to the system. In fact, weighted kNN and kNN are
simple forms of LL. A version of LL according to [27] has
been implemented in this paper. This version of the LL
algorithm is similar to the kNN algorithm in principle, with
the difference that for each query, the optimum number of
neighbors (k) is not fixed and is estimated separately. The idea
is that for some queries it seems better to look at more
neighbors and for some others, fewer neighbors would be
enough. For each query, kNN is performed 𝑘!"# times
for 𝑘 = {1,2,… , 𝑘!"#}. Then, based on Leave-one-out (LOO)
cross validation, the error for each k is estimated, and the
output corresponding to the k with a lower LOO cross
validation error is selected. We use the PRESS statistic [27] to
estimate LOO for each k. For a fixed 𝑘 ∈ 1,2,… , 𝑘!"# ,
suppose 𝑗∗ ∈ 1,2,… , 𝑘 indicates the index of the jth closest
neighbor to the query 𝑥(𝑡!∗). For each 𝑗∗, we define an error
term

𝑒! 𝑗∗ = 𝑘
𝑦 𝑗∗ − 𝑦(𝑖)

𝑘 − 1
 (6),

which gives the LOO cross validation error for the specific 𝑘:

 𝑒!"" 𝑘 =
1
𝑘

(𝑒! 𝑗∗ ! ∗ (𝑒! 𝑗∗)
!

!∗!!

 (7).

The k with smallest 𝑒!"" will be selected as the optimum k.
The steps are detailed in Fig. 3.

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

Figure 3. Lazy Learning Algorithm.

V. SIMULATION SETUP AND PRELIMINARY RESULTS

A. Data
The algorithms described above are applied to charging

stations located on the UCLA campus. The data used in this
paper were recorded from December 7, 2011 to October 16,
2013; however, for each day, not all stations were in use.
Among all the charging stations at UCLA, 15 stations have
charging data for more than 60 effective days (days that some
nonzero charging has been reported); these stations have been
used in our implementation. The number of effective days for
each station is reported in Table I.

Data for each station comes in a format which is referred to
as Charging Records. Each charging record contains the
beginning and end of the charging time as well as the acquired
energy.

B. Preprocessing
The Charging Records are converted to time series by

uniformly dividing the acquired energy to the charging
interval. For example, if charging interval is 3 hours and the
acquired energy is 3kWh, it is assumed that the EV received
1kWh of energy in each hour. In pre-processing the data, if all
the values in an input-output pair (𝑥(𝑖), 𝑦(𝑖)) are zero or not
reported, the pair was removed from the data set.

There was no normalization or feature extracting from the
data. The only implemented pre-processing was to force
energy records that were mistakenly recorded as more than the
physical maximum of the charging device (𝐸!"#) and less
than zero to the interval of [0,𝐸!"#].

C. Parameter Selection
The following parameters need to be determined for our

algorithms: Depth, 𝐷, for all algorithms, which is the number
of previous days considered in the input vector, and the
number of neighbors, 𝑘, in kNN and weighted kNN.

There are different options for performing parameter
selection through validation in time series [3]. One of the
popular methods is the k-fold cross validation. In k-fold cross
validation, for evaluating a certain set of candidate parameters,
the training data is divided into k parts (𝑃! , 𝑖 = 1,… , 𝑘) and
algorithm trains on k-1 parts (𝑃!! = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 − 𝑃!) while
the error is calculated on the remaining part (𝑃!), i.e., the
validation set. This process iterates k times, and each time one
of the parts will be the validation set and the other k-1 parts
will make up the training set. The average error of the
algorithm on these k iterations will determine the final error
for the current selection of parameters. The whole process is
repeated for different combinations of parameters and the
combination that yields the least final error is selected as
algorithm parameters.

 However, [4] discusses how k-fold cross validation in its
original form might not be appropriate for time series since it
does not respect the order. It proposes a “time series cross
validation” in which for cross validation we are only allowed
to use training data prior to the validation set, i.e. if validation

set is 𝑃!, then the training data would be 𝑃! , 𝑗 = 1,… , 𝑖 − 1
instead of 𝑃!!. Another approach taken in [29] is to use the last
portion of the training data for validation and parameter
selection purposes. In this approach, the validation set is the
last block of training data, 𝑃!, and the rest of data prior to it,
𝑃! , 𝑗 = 1,… , 𝑘 − 1, is used for training; hence, it is less
computationally expensive since it evaluates parameters on
just one block rather than k blocks.

Figure 4. Separating validation data from training data in the last block

validation method.

We have tried all of the three mentioned validation
methods: k-fold cross validation, time series cross validation,
and the last block validation. We found that they lead to
similar behavior in the final results; therefore, in this paper,
we are going to dedicate the last block of training data to
validation data which is relatively less computationally
expensive, and therefore more appropriate for our fast
prediction application. This method basically partitions the
data to non-overlapping training, validation and test data sets
as depicted in Fig 4.

The length of the validation block is the next matter of
importance. We must determine how much of the last portion
of the available data is a good representative of the behavior of
all the data for specific parameters. In order to answer this
question, we picked different percentages of the last part of the
training data for each station and each algorithm, and we
compared it with the whole dataset in terms of similarity in
response to change in parameters.

The smallest percentage of data that could represent the
whole training dataset for all algorithms is selected as the final
validation set for each station. Table I shows the percentage of
the data that is used as validation set for each station. The
candidate percentages were: 10%, 15%, 20%, 25%, and 30%.

TABLE I. NUMBER OF EFFECTIVE DAYS FOR EACH STATION AND
PERCENTAGE OF DATA USED FOR TRAINING, VALIDATION AND TEST SETS

No Station Effective
Days

Training
Set (%)

Validation Set
(%)

Test Set
(%)

1 PS3L401LIA3 95 85 15 10
2 PS8L201LIA1 84 85 15 10
3 PS8L201LIA3 97 85 15 10
4 PS8L201LIA4 171 90 10 10
5 PS8L202LIIA1 163 85 15 10
6 PS8L202LIIA2 168 90 10 10
7 PS8L202LIIA3 151 90 10 10
8 PS9L401LIA1 178 80 20 10
9 PS9L401LIA2 126 75 25 10
10 PS9L401LIA3 307 90 10 10
11 PS9L401LIA5 189 80 20 10

Test Data Validation Data Training Data

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

12 PS9L401LIA6 269 80 20 10
13 PS9L601LIA1 206 70 30 10
14 PS9L601LIA3 178 80 20 10
15 PS9L601LIA4 124 85 15 10

For parameter selection, the depth parameter, D, is varied

between 1 to 60 (equal to looking only at yesterday or up to
the past two months); in order to make the process faster, a
subset of 1 to 60, namely {1,2,…,9,10,15,20,…,60} is
employed. The number of neighbors varies between 1 to 5 for
kNN and 2 to 5 for weighted kNN (weighted kNN with k=1 is
the same as kNN with k=1).

D. Preliminary Results
Table II and III show the depth (D) and number of

neighbors (k) parameters, selected according to the previous
section, for each site and each parameter.

TABLE II. SELECTED DEPTH PARAMETER FOR EACH ALGORITHM
BASED ON VALIDATION RESULTS

No Station Historical
Average

kNN Weighted kNN Lazy
Learning

1 PS3L401LIA3 1 60 60 60
2 PS8L201LIA1 1 55 8 60
3 PS8L201LIA3 1 50 60 60
4 PS8L201LIA4 2 55 4 20
5 PS8L202LIIA1 1 40 1 40
6 PS8L202LIIA2 1 60 1 35
7 PS8L202LIIA3 1 20 1 20
8 PS9L401LIA1 1 15 1 2
9 PS9L401LIA2 1 15 4 15
10 PS9L401LIA3 1 35 15 25
11 PS9L401LIA5 1 45 45 45
12 PS9L401LIA6 1 60 1 60
13 PS9L601LIA1 1 60 60 60
14 PS9L601LIA3 1 60 55 55
15 PS9L601LIA4 1 30 30 50

After selecting the parameters, the union of the training data
and validation data are treated as the new training dataset and
used for predicting the first day in the test dataset. For
predicting the second day in the test dataset, the union of
training dataset, validation dataset, and the first day in the test
data is used; similarly, for predicting the ith day in the test set,
all the data prior to it (training dataset, validation dataset, and
test dataset up to (i-1)th day) is employed.

Interestingly, as can be seen in Table III, for all stations, the
optimum number of neighbors is chosen to be equal to 1 for
the kNN algorithm. This shows that, regardless of the
optimum number of days to forecast, it is always better to look
at the most similar event in the past and copy its future energy
consumption values as the prediction. Also, the optimum
number of neighbors for weighted kNN in all stations is 2;
considering that k ranges from 2 to 5 and the kNN algorithm
with k=1 shows better performance, one can conclude that k=1
is the optimum parameter.

TABLE III. SELECTED NUMBER OF NEIGHBOURS PARAMETER FOR EACH
ALGORITHM ASED ON VALIDATION RESULTS

No Station kNN Weighted kNN
1 PS3L401LIA3 1 2
2 PS8L201LIA1 1 2

3 PS8L201LIA3 1 2
4 PS8L201LIA4 1 2
5 PS8L202LIIA1 1 2
6 PS8L202LIIA2 1 2
7 PS8L202LIIA3 1 2
8 PS9L401LIA1 1 2
9 PS9L401LIA2 1 2

10 PS9L401LIA3 1 2
11 PS9L401LIA5 1 2
12 PS9L401LIA6 1 2
13 PS9L601LIA1 1 2
14 PS9L601LIA3 1 2
15 PS9L601LIA4 1 2

Table IV shows the average and standard deviation of

SMAPE on test days for each algorithm and each station.

TABLE IV. AVERAGE AND STANDARD DEVIATION (IN PARANTHESES) OF
SMAPE (%) ON TEST DAYS FOR EACH ALGORITHM

No Historical
Average

kNN Weighted kNN Lazy
Learning

1 95.98 (2.36) 3.40 (6.72) 3.58 (7.06) 3.72 (7.48)
2 97.62 (1.64) 16.08 (34.67) 33.83 (45.63) 16.11 (29.48)
3 97.45 (1.16) 51.45 (31.40) 49.64 (33.08) 49.69 (33.13)
4 94.10 (4.75) 1.64 (3.15) 13.12 (17.45) 14.40 (11.89)
5 87.04 (8.91) 28.43 (19.77) 35.08 (23.87) 34.94 (15.99)
6 83.19 (10.96) 35.21 (12.60) 26.61 (16.18) 37.82 (13.87)
7 87.07 (11.61) 28.63 (17.54) 22.90 (16.05) 38.72 (14.80)
8 80.44 (14.54) 21.20 (28.01) 22.16 (21.82) 25.67 (27.08)
9 95.95 (2.55) 12.38 (8.61) 18.19 (9.20) 16.05 (10.89)
10 92.82 (10.43) 8.66 (14.62) 12.32 (18.69) 12.37 (18.10)
11 87.71 (11.71) 7.14 (11.83) 12.70 (13.11) 13.19 (13.62)
12 76.69 (12.23) 3.75 (13.34) 18.75 (17.57) 3.75 (13.34)
13 91.99 (4.84) 10.64 (10.26) 15.82 (10.68) 16.11 (10.73)
14 90.94 (5.28) 9.78 (12.33) 14.06 (12.24) 14.72 (12.22)
15 87.49 (5.91) 8.37 (12.29) 10.12 (14.83) 11.28 (16.01)
Mean 84.86 (7.26) 16.45 (15.81) 20.59 (18.50) 20.57 (16.57)

The historical average has by far the worst performance.
For better comparison, the error for other three methods has
been depicted in Fig. 5.

Comparing LL results with kNN, it seems that LL was not
successful in choosing the best number of neighbors (k) for
each query; otherwise, it would have better results compared
to kNN (which has a constant k). Stations no. 3 is the
exceptions to this, where LL does (slightly) better than kNN.
Also weighted kNN does a better job in stations no 6 and 7.
Overall, the accuracy results for kNN with k=1 (which is the
Nearest Neighbor) nominates it as the best method. It is
notable that for station no. 3 all algorithms result SMAPE of
around 50%.

All simulations were run with RStudio Version 0.97.551 on
an Intel Core i-7 CPU at 3.40 GHz with 16 GB RAM.

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

Figure 5. Comparing kNN, wkNN, and LL. kNN gives the better overal

accuracy.

VI. PROPOSED ALGORITHM
In the previous section, we found that the Nearest Neighbor

(NN) algorithm has the best performance as the fast predictor
algorithm on the examined data. However, there is still a room
to improve the results since the results for some of the stations
is not yet satisfactory, e.g. station no 3.

Looking at Fig. 2 for the kNN algorithm, it turns out that
after selecting k (which, through parameter selection, is equal
to 1), there is not much room for modifying the algorithm
except step 2 which is the dissimilarity calculation step. The
dissimilarity that have been used in the paper is Euclidean
distance. Thus, we are focusing on modifying the dissimilarity
measure in step 2 of the kNN algorithm in order to improve
the performance.

A. Dissimilarity measures
In applying the NN algorithm, we used Euclidian distance

to measure the dissimilarity between two data points and
determine the nearest neighbor of each input query. However,
the EV charging data is sparse, meaning that in significant
chunks of time, e.g. during nights in the government or official
parking spaces, there is no charging in progress and the
consumed power is zero. When the data is sparse, it might be
beneficial to employ other dissimilarity measures than
Euclidian distance.

One way to define the dissimilarity measure is to use the
inverse or negative of a similarity measure. A candidate for
similarity measure is the dot product of two vectors since it is
zero when two vectors are orthogonal to each other and is
maximum when they are equal. Specifically, the dot product
of two signals that have non-zero elements in different indices
is equal to zero. Fig. 6 illustrates this concept: the dissimilarity
between vectors X and Y is equal to 2 for both cases when it
is calculated through Euclidean distance while the
dissimilarity calculated through dot product in Fig.6.a is
higher (−< 𝑋,𝑌 >= 0) than Fig.6.b (−< 𝑋,𝑌 >= −3). This
fits well to sparse time series prediction applications, since the
similarity between two pieces of signals with different indices
of non-zero elements should be as less as possible.

B. Kerneleized similarity
Upon using the dot product as similarity measure, one can

use kernelized similarity measures to get more flexibility and
to compute similarity in higher dimensions [31]. In particular,
polynomial kernels are interesting for us here since it is the
natural extension of the dot product. A polynomial kernel for
similarity between x and y is often defined as following [25]:

𝐾 𝑥, 𝑦 = 𝑥!𝑦 + 𝑐 ! (8),
where 𝑐 ≥ 0 is a constant that is trading off the influence of
higher-order terms versus lower order ones and d is the degree
of the polynomial kernel. Now, we can define the dissimilarity
measure based on the polynomial kernel:

𝑑𝑖𝑠(𝑥(𝑡!), 𝑥(𝑡!)) = −𝐾(𝑥(𝑡!), 𝑥(𝑡!)) (9).
Another alternative for defining dissimilarity based on

kernels is to find the distance of two inputs in the kernel space
which can be obtained from the following equation:

𝑑𝑖𝑠 𝜑 𝑥 𝑡! ,𝜑 𝑥 𝑡!
!
= 𝐾 𝑥 𝑡! , 𝑥 𝑡! +

𝐾(𝑥(𝑡!), 𝑥(𝑡!)) − 2𝐾(𝑥(𝑡!), 𝑥(𝑡!)).
(10).

It, however, needs more computation because of self-
mapping terms, and it does not improve our results in practice.

Figure 6. Comparison between Euclidean and dot product similarities of two
vectors X and Y. Euclidiean distance gives the same dissimilarity for both a)
and b) while dot product based dissimilarity, assigns higher disimilarity to a).

C. Time weighted dissimilarity
Another intuitive modification of the dissimilarity measures

could be time weighting; for instance, outputs 𝑦 𝑡! and 𝑦(𝑡!)
are more similar if the recent values of their corresponding
inputs 𝑥 𝑡! and 𝑥(𝑡!) are more similar. In order to weight
the recent values for an input that has been defined in (5), we
have used linear time weighting:

𝑇𝑊 = [1 + 𝐷 ,… ,1 + 2∆,1 + ∆,1]
where ∆= 1/(24𝐷 − 1) and D is the depth of input. Also, we
have tried other weighting methods such as exp(TW) but we
did not see improvement in the final results.

Combining all the modifications together, the dissimilarity
measure used in kNN algorithm will be substituted with:
𝑑𝑖𝑠(𝑥(𝑡!), 𝑥(𝑡!)) = − 𝑥 𝑡! ! 𝑑𝑖𝑎𝑔 𝑇𝑊 𝑥 𝑡! + 𝑐 ! (10).

0

10

20

30

40

50
SM

A
PE

Station No

kNN wkNN LL

0

1

a)

0

1

2

3

b)

X	
 Y	

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

D. Results
We used the same settings as discussed in Section V and the

only difference in this section is modifying the dissimilarity
measure. This modification however adds two more
parameters c and d according to (10) which, like other
parameters, need to be determined with validation. However,
in different simulations we did not see much of a difference in
the final results of the NN algorithm with the change in c or d.
Therefore, both of these parameters have been set equal to 1.
The conclusion is that similarity in higher order terms are not
necessary for finding the prediction related similarity in our
application, and only the linear terms’ contribution is enough
for prediction. This is good news computational wise since
there is no need to try higher order terms.

Fig. 7 shows a sample test day from Station 1 and its
prediction. The SMAPE for this specific day is 16.93%. The
results for all stations are presented in Table V. According to
the Table V, the average SMAPE has been improved in all
methods compared with the Euclidean distance case. Fig 8
displays the kNN, weighted kNN, and LL results with
modified dissimilarity measure. It’s notable that maximum
SMAPE for all methods has been decreased to less than 35%
SMAPE.

TABLE V. AVERAGE AND STANDARD DEVIATION (IN PARANTHESES) OF
SMAPE (%) ON TEST DAYS FOR EACH ALGORITHM

No Station kNN (k=1) Weighted kNN
 (k=2)

Lazy Learning

1 PS3L401LIA3 3.96 (7.62) 3.65 (6.44) 4.04 (7.04)
2 PS8L201LIA1 0.67 (2.43) 0.67 (2.43) 0.67 (2.43)
3 PS8L201LIA3 0.79 (4.53) 1.49 (5.43) 1.49 (5.43)
4 PS8L201LIA4 9.24 (10.16) 19.54 (13.44) 19.54 (13.44)
5 PS8L202LIIA1 20.09 (19.12) 23.08 (21.41) 21.50 (18.10)
6 PS8L202LIIA2 30.50 (16.55) 34.73 (9.94) 34.20 (10.68)
7 PS8L202LIIA3 24.09 (19.79) 25.61 (19.13) 26.46 (20.48)
8 PS9L401LIA1 22.95 (21.37) 32.57 (28.79) 32.28 (28.14)
9 PS9L401LIA2 11.46 (7.75) 13.20 (9.10) 13.62 (10.19)
10 PS9L401LIA3 5.96 (14.09) 5.96 (14.09) 5.96 (14.09)
11 PS9L401LIA5 14.38 (13.84) 16.17 (14.02) 16.17 (14.02)
12 PS9L401LIA6 18.91 (17.90) 13.96 (22.16) 13.96 (22.16)
13 PS9L601LIA1 13.89 (13.62) 16.57 (15.06) 16.54 (14.94)
14 PS9L601LIA3 7.81 (12.02) 8.34 (11.67) 8.36 (11.69)
15 PS9L601LIA4 6.45 (12.41) 6.45 (11.61) 6.45 (11.61)
Mean 12.74 (12.88) 14.80 (13.65) 14.75 (13.63)

The interesting difference in the pattern of SMAPE errors

between results from two different dissimilarity measures has
been depicted for NN case in Fig. 9. As this figure shows, for
stations that the Euclidean dissimilarity has relatively high
errors such as station no. 3, the dot product similarity has
relatively low errors and vice versa. The fact that SMAPE
error in station no. 3 has decreased from 51% (NN with
Euclidean distance) to 0.79% (NN with dot product
dissimilarity) illustrates that dot product was extremely
successful in finding similar points in the time vectors and
making the prediction based on that. This phenomenon shows
that, depending on the characteristic of the time series in hand,
we might need to change our point of view (from measuring
Euclidean dissimilarity to dot product one) to be able to see
the similar points in the training data to our test query.

Figure 7. Actual enrgy consumption (green) and its prediction with dot
product based NN algorithm (red) for a sample test day in Station 1. The

SMAPE for this day is 16.93%.

In fact, the effective characteristic here seems to be
sparseness of the time series. Fig. 10 show the percentage of
the sparseness of the time series (number of zero entries
divided by the total number of entries in the times series)
calculated with the optimum depth for each station.
Comparing this plot with dot product plot in Fig. 9 shows an
interesting relationship: The time series which dot product
based dissimilarity does better, are mostly sparser ones.

In order to take advantage of both dissimilarity measures,
we implement the best method for each station with the best
dissimilarity measure. For example, from Fig. 9, for station
no. 3 we use the NN with the dot product dissimilarity while
for station no. 12, we use the NN with Euclidean dissimilarity.

The more accurate algorithm will help the EV charging
station owner to increase the profit. Knowing the prediction of
the consumption in the future, the station owner can utilize all
the capacity of charging stations and therefore obtain more
profit; on the other hand, the station owner can reduce the
disappointment of the EV owner in the case of all stations
being full. Depending on which factor is more important for a
certain EV station owner, s/he can penalize the over prediction
of consumption (which translates to empty stations in
sometimes of the day) or under prediction of the consumption
(which translates to disappointed EV owner) in an appropriate
way. Here, the SMAPE accuracy measure introduced in (2) is
a symmetric one and does not penalize either over prediction
or under prediction. However, the algorithms are readily
usable for asymmetric error measurement criteria.

Figure 8. Comparing kNN, wkNN, and LL for dot product dissimilarity

measure. kNN gives the better overal accuracy.

5 10 15 20

0.
0

0.
4

0.
8

0.169296013570823

Time(hour)

E
ne

rg
y

(k
W

h)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

M
ea

n

SM
A

PE

Station No

kNN wkNN LL

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

Figure 9. Comparing kNN, wkNN, and LL for dot product dissimilarity

Figure 10. Sparseness of the time series of each station calculated at the

optimum depth.

VII. CELLPHONE APPLICATIONS BASED ON PROPOSED

ALGORITHM
Based on the results, NN with the modified dissimilarity

measure (which is simply the dot product) has higher accuracy
on most of the stations with sparser time series and NN with
the original Euclidean distance dissimilarity is performing
better on stations with less sparse time series were selected as
the algorithm for the cellphone application. We implemented
two algorithms on top of the prediction algorithm:

• One application takes the station name, required
energy (in kWh) needed to charge the vehicle, and
the start of charging time as input. The output is
the predicted end time of charging,

• Another application takes the station name, starting
time and ending time for the charging as input. The
output is the predicted amount of available energy
in kWh.

The total time for the algorithm to run is about a second
(less than a second for less crowded stations), which is
composed of the time to (a) run in C# under Microsoft Visual
Studio 2012, (b) access the database through Microsoft SQL
Server 2012, and (c) generate the output. This is well within
the acceptable time for a mobile application response time.
The algorithm is now running on the mobile application and is
available to UCLA EV owners.

VIII. CONCLUSION
In this paper, we have developed an approach for fast

demand prediction of the sparse time series in general, and
specifically EV charging stations. We found that, in general,
Nearest Neighbor based predictions generate better predictions
than kNN and weighted kNN. We modified the dissimilarity
measure in NN from standard Euclidean distance in two ways:
1) changing Euclidean distance to (negative) dot product and
2) adding time weightings to the dissimilarity measure so that
recent similar indices in time series get more weight than older
ones. Each of these modifications improves the accuracy by
itself and their combination improves the results more.

We have implemented this method in the cellphone
application system that is used by UCLA EV owners.

ACKNOWLEDGMENT
Authors would like to thank Ching-Yen Chung for his

inputs.

REFERENCES
[1] S. A. Dudani, “The Distance-weighted k-Nearest Neighbor Rule,” IEEE

Transactions on System, Man, and Cybernetics, Vol. SMC-6, pp. 325-
327, 1976.

[2] J. Zavrel, “An empirical re-examination of weighted voting for K-NN,”
In: Daelemans W, Flach P, van den Bosch A (eds) Proceedings of the 7th
Belgian-Dutch Conference on Machine Learning, Tilburg, pp 139-148,
1997.

[3] S. Arlot and A. Celisse, "A survey of cross-validation procedures for
model selection," Statist. Surv., vol. 4, pp.40 -79 2010

[4] http://robjhyndman.com/hyndsight/crossvalidation/
[5] M. Kintner-Meyer, K. Schneider, R. Pratt, “Impacts Assesment of Plug-

in Hybrid Vehicles on Electric Utilities and Regional U.S. Power Grids
Part 1: Technial Analysis”, PNNL, Jrnl. of EUEC, Paper #04, Volume 1,
2007 [Online]. Avilable:
http://www.euec.com/getattachment/euecjournal/Paper_4.pdf.aspx

[6] M. Majidpour, W.P. Chen, “Grid and Schedule Constrained Electric
Vehicle Charging Algorithm Using Node Sensitivity Approach”, Proc.
2012 Intl. Conf. Connected Vehicles and Expo (ICCVE), pp. 304-310.

[7] C. Chung, A. Shepelev, C. Qiu, C. Chu, R. Gadh, "Design of RFID
Mesh Network for Electric Vehicle Smart Charging Infrastructure",
IEEE RFID TA 2013, Johor Bahru, Malaysia, 4-5 September, 2013.

[8] S. Mal, A. Chattopadhyay, A. Yang, R. Gadh, "Electric vehicle smart
charging and vehicle-to-grid operation", Intl Journal of Parallel,
Emergent and Distributed Systems, vol. 27, no. 3. March 2012.

[9] C.Chung, E. Youn, J. Chynoweth, C. Qiu, C. Chu, R. Gadh, "Safety
Design for Smart Electric Vehicle Charging with Current and
Multiplexing Control", 2013 IEEE International Conference on Smart
Grid Communications, Vancouver, Canada, 21-24 October, 2013.

[10] C. Chung, J. Chynoweth, C. Qiu, C. Chu, R. Gadh, "Design of Fast
Response Smart Electric Vehicle Charging Infrastructure", IEEE Green
Energy and Systems Conf., Long Beach, CA, Nov 25, 2013.

[11] Alternative Fuels Data Center, U.S. Department of Energy, [Online].
Available http://www.afdc.energy.gov/fuels/stations_counts.html

[12] N.K. Ahmed, A.F. Atiya, N. El Gayar, H. El-Shishiny, “An empirical
comparison of machine learning models for time series forecasting”,
Econometric Reviews, 29 (2010), pp. 594–621.

[13] T. G. Dietterich, “Machine Learning for Sequential Data: A Review”,
Springer Lecture Notes in Computer Science, vol.2396, 2002, pp.15-30.

[14] GEP Box, GM Jenkins, GC Reinsel, Time series analysis: forecasting
and control, Wiley Series in Probability and Statistics, 2013 (4th ed.)

[15] J. D. Hamilton, Time Series Analysis, Princeton University Press, 1994.
[16] K.N. Kumar, P.H. Cheah, B. Sivaneasan, P.L. So, D.Z.W. Wang,

“Electric vehicle charging profile prediction for efficient energy
management in buildings”, in Proc. 2012 IEEE Conference on Power &
Energy, pp. 480 – 485.

[17] A. Aabrandt , P. B. Andersen , A. B. Pedersen , S. You , B. Poulsen , N.
O’Connell and J. Ostergaard "Prediction and optimization methods for

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

M
ea

n

SM
A

PE

Station No

Dot Product Euclidean

2 4 6 8 10 12 14

70
80

90

Station No

Sp
ar

se
ne

ss

To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press).

electric vehicle charging schedules in the EDISON project", IEEE
Power Energy Soc. Innovative Smart Grid Tech. Conf., pp.1-7, 2012.

[18] R. Shankar, J. Marco, “Method for estimating the energy consumption
of electric vehicles and plug-in hybrid electric vehicles under real-world
driving conditions” IEEE Intelligent Transport Systems, vol. 7, pp. 138 –
150, March 2013

[19] A. Ashtari , E. Bibeau , S. Shahidinejad and T. Molinski "PEV charging
profile prediction and analysis based on vehicle usage data", IEEE
Trans. Smart Grid, vol. 3, no. 3, pp.341 -350, 2012

[20] M. Alizadeh, A. Scaglione, J. Davies, K. S. Kurani, “A Scalable
Stochastic Model for the Electricity Demand of Electric and Plug-In
Hybrid Vehicles”, IEEE Trans. Smart Grid, no. 99, pp.1-13, Sept 2013

[21] Y. Q. Li, Z. H. Jia, F. L. Wang, Y. Zhao, “Demand Forecast of Electric
Vehicle Charging Stations Based on User Classification”, Applied
Mechanics and Materials, pp. 291-294, 2013

[22] J. Wang, K. H. Wu, F. Wang, Z. H. Li, Q. S. Niu, Z. Z. Liu, “Electric
Vehicle Charging Station Load Forecasting and Impact of the Load
Curve”, 2012, Applied Mechanics and Materials, 229-231, 853

[23] G. Seymour, Predictive Inference. NY: Chapman and Hall, 1993
[24] R. Kohavi, "A study of cross-validation and bootstrap for accuracy

estimation and model selection". Proc. of the Fourteenth International
Joint Conference on Artificial Intelligence 2 (12): pp.1137–1143, 1995.

[25] C. M. Bishop, N. M. Nasrabadi, Pattern recognition and machine
learning. Vol. 1. New York: springer, 2006.

[26] N. S. Altman, "An introduction to kernel and nearest-neighbor
nonparametric regression". The American Statistician 46 (3): pp. 175–
185, 1992.

[27] G. Bontempi, S. Ben Taieb, and Y. Le Borgne. "Machine Learning
Strategies for Time Series Forecasting." In Business Intelligence, pp. 62-
77. Springer Berlin Heidelberg, 2013.

[28] D. M. Allen, "The relationship between variable selection and data
augmentation and a method for prediction." Technometrics 16, no. 1
(1974): 125-127.

[29] Ben Taieb, S., Bontempi, G., Atiya, A.F., Sorjamaa, A. “A review and
comparison of strategies for multi-step ahead time series forecasting
based on the NN5 forecasting competition”, (2012) Expert Systems with
Applications, 39 (8), pp. 7067-7083

[30] M. Majidpour, C. Qiu, C-Y. Chung, P. Chu, R. Gadh, H. Pota, “Fast
Demand Forecast of Electric Vehicle Charging Stations for Cell Phone
Application”, in Proc. IEEE/PES General Meeting, 27-31 July 2014,
Washington, D.C.,USA, in press.

[31] M. Aizerman, E. Braverman, L. Rozonoer, "Theoretical foundations of
the potential function method in pattern recognition learning",
Automation and Remote Control 25: 821–837, 1964.

[32] M. Sechilariu , B. Wang and F. Locment "Building integrated
photovoltaic system with energy storage and smart grid
communication", IEEE Trans. Ind. Electron., vol. 60, no. 4, pp.1607 -
1618, 2013.

[33] F. Kennel , D. Gorges and S. Liu "Energy management for smart grids
with electric vehicles based on hierarchical MPC", IEEE Ind.
Informat., vol. 9, no. 3, pp.1528 -1537, 2013.

[34] C. E. Borges , Y. K. Penya and I. Fernandez "Evaluating combined load
forecasting in large power systems and smart grids", IEEE Ind.
Informat., vol. 9, no. 3, pp.1570 -1577, 2013.

[35] L. Barote , C. Marinescu and M. N. Cirstea "Control structure for
single-phase stand-alone wind-based energy sources", IEEE Trans. Ind.
Electron., vol. 60, no. 2, pp.764 -772, 2013.

[36] H. Kanchev , D. Lu , F. Colas , V. Lazarov and B. Francois "Energy
management and operational planning of a microgrid with a PV-based
active generator for smart grid applications", IEEE Trans. Ind.
Electron., vol. 58, no. 10, pp.4583 -4592, 2011.

