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Abstract— This article describes the core cellphone application 

algorithm which has been implemented for the prediction of 
energy consumption at Electric Vehicle (EV) Charging Stations 
at UCLA. For this interactive user application, the total time of 
accessing database, processing the data and making the 
prediction needs to be within a few seconds. We analyze three 
relatively fast Machine Learning based time series prediction 
algorithms and find that the Nearest Neighbor (NN) algorithm (k 
Nearest Neighbor with k=1) shows better accuracy. Considering 
the sparseness of the time series of the charging records, we then 
modify the dissimilarity measure in the NN algorithm to improve 
the accuracy and processing time. Two applications have been 
designed on top of the proposed prediction algorithm: one 
predicts the expected available energy at the station and the other 
one predicts the expected charging finishing time. The total time, 
including accessing the database, data processing, and prediction 
is approximately one second for both applications. The 
granularity of the prediction is one hour and the horizon is 24 
hours; data have been collected from 15 charging stations.  
 

Index Terms— Cellphone Applications, Electric Vehicles, 
Kernel methods, Nearest Neighbor Searches, Prediction 
Methods, Sparse time series. 
 

I. INTRODUCTION 
lectric Vehicles (EVs) (or Plug-in Hybrid Electric 
Vehicles (PHEV)) will be an important part of the Smart 

Grid. The big challenge for EVs is their charging within the 
existing distribution system infrastructure. According to the 
EV33 rule (33 miles driving range for a single charge [5]), the 
minimum battery size in EVs varies from 8.6 kWh to 15.2 
kWh [6]. Charging batteries with the aforementioned size will 
take between four and eight hours in a Level 1 household 
charger (120V, 16 A). As an alternative, EV owners can 
charge their vehicle at their place of employment, provided 
that the employer has installed the chargers in the parking lot. 
Other than workplace parking lots, cities and private operators 
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have invested in charging stations for public use. As of 
October 2013, the number of these stations in the US has 
reached 19,730 which is roughly a sixth of the number of gas 
stations in the US [11].  Electric power has to be consumed 
simultaneously upon generation. As a result, the EV charging 
station needs to have a good idea of how many vehicles will 
need charging at each moment. On the other hand, since a  
reasonable amount of charging will take tens of minutes, it 
would be useful for a customer to know when and how much 
energy is expected to be available at a given charging station 
in a given time window. Both the customer and moderator will 
substantially benefit from an algorithm that can predict the 
power consumption at charging stations.  

With emerging smart phones, it would be beneficial to 
customers if they could receive the prediction information on 
their cellphone, giving them an estimate of the charging time. 
This paper discusses prediction algorithms that can run in less 
than a few seconds, so that EV users can query the system and 
get the results in a reasonable time on their cellphones. To our 
knowledge, our work is the first research that discusses fast 
prediction of the available energy and/or expected charging 
finishing time at the charging station for use in a cellphone 
application. The data used in the algorithm is obtained from 
the charging records. A charging record in this paper is a 
datum that contains the start and end time of a charging 
transaction as well as the total amount of received energy (in 
kWh) by the EV. The charging records database consists of 
the historical charging data for a given charging station. 

The work described in this paper differs from other previous 
works in literature: 1) we have used just one type of recorded 
data, Charging Records, which only contains the start and end 
of the charging transaction and the total amount (a scalar 
value; not time dependent) of energy received in the charging 
transaction rather than geographical or any driving habit 
related data; 2) our predictions is at the charging station level 
(not parking lot or the whole building level); 3) our method is 
online and fast with the whole process taking about a second. 
Indeed, the reason that we do not use other sources of data is 
our speed requirement and the fact that adding more data will 
slow the process.   

The rest of this paper is organized as follows: Section II 
provides a brief review of existing literature, Section III 
formulates the problem, Section IV explains the methods that 
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are evaluated in this paper in order to compare with the 
proposed method. Section V reports and analyzes the result of 
applying the algorithms on the University of California, Los 
Angeles (UCLA) parking structures’ data. Section VI explains 
the proposed algorithm via modifications to discussed 
algorithms, Section VII talks about the implementation of the 
cellphone applications using the proposed algorithm and 
Section VIII provides the conclusion and future work. 

II. LITERATURE REVIEW 
Time series prediction (forecasting) methods predict the 

future of a certain variable given its past history. There is a 
rich literature on different methods of time series prediction 
that has evolved from statistics, mathematics, computer 
science, economics, and engineering [13]-[15]. Probably, the 
most famous model in time series prediction is the ARIMA 
model with Box-Jenkins approach [14] which has been used 
widely in economics and statistics [15] and is considered to be 
the traditional approach in time series prediction. Selecting the 
correct parameters for the ARIMA model is not a trivial task, 
and, depending on the approach, it might be time consuming.  

Prediction algorithms are part of most of the modern smart 
grid technologies [34] such as Photovoltaic systems [36], 
Smart Buildings [32], and Wind Turbines [35]. Extensive 
research has focused on EV charging algorithms and charging 
station infrastructures [7]-[10], and, as a next step, EV related 
research has started to utilize forecasting algorithms [16]-[22]. 
Some papers apply forecasting algorithms to EV driving 
habits and   predict the State of Charge (SOC) of a particular 
EV and when it needs to be charged [17][18]. Authors in [16] 
have applied Artificial Neural Network (ANN) forecasting 
algorithms to predict the charging profile of the EV within the 
Building Energy Management System (BEMS) in order to 
improve the overall energy efficiency of the building.  
Reference [19] and [20] discuss the prediction of the EV 
charging profile while taking into account various sources of 
data, such as vehicle driving/usage data. Authors in [21] and 
[22] consider forecasting at the charging station level based on 
the EV user classification and Monte Carlo simulations 
method. Reference [33] discusses an energy management 
system for EVs that takes advantage of prediction in different 
levels through hierarchical Model Predictive Control. 

As mentioned above, the aim of this work is to focus on 
relatively fast time series forecasting algorithms in which the 
whole process of prediction (including pre-processing) takes a 
reasonably short amount of time for a user that sends 
prediction-related queries from a cellphone. Machine Learning 
(ML) based heuristic methods have been shown to provide a 
good performance in forecasting [12]. Some of these methods 
such as k-Nearest Neighbor (kNN) and weighted kNN 
depending on the number of neighbors could be pretty fast. 
However, the selection of parameters for these ML methods 
still remains a challenge. 

For our predictor application, we are interested in the ML 
based algorithms that have low computation requirements and 
are relatively faster. A brief introduction of these methods will 
follow in Section IV.  

III. PROBLEM FORMULATION 
The objective is to predict the available energy in the next 

24 hours at each charging station with a minimum time for 
processing. Formally, we assume there is some function 
relating future available energy and the past consumed energy: 

𝐸 𝑡 = 𝑓 𝐸 𝑡 − 𝑖 , 𝜀 𝑡           𝑖 ∈ 1,2,…    (2), 
where 𝐸(𝑡) is the actual energy consumption at time t, 𝐸(𝑡) is 
the prediction of the energy consumption at time t, 𝜀 𝑡  is the 
set of all variables (such as noise) other than past energy 
consumption records (𝐸 𝑡 − 𝑖 ) that 𝑓 might depend on.   

As the usual practice in forecasting, we are interested to 
find an estimation of 𝐸(𝑡) according to a particular 
performance (or error) criteria. For the error measurement, we 
have chosen Symmetric Mean Absolute Percentage Error 
(SMAPE). For the day i, the SMAPE is defined as: 

𝑆𝐴𝑀𝑃𝐸 𝑖 =   
1
𝐻

𝐸 𝑡 − 𝐸 𝑡
𝐸 𝑡 + 𝐸 𝑡

×100,
!∈!"# !

     (2), 

where 𝐻 is the horizon of prediction in a given day 𝐻(=24 in 
this paper).  

Since there is no access to future data in real life, the last 
portion of the data (last 10% in this paper) is set aside as the 
test set to evaluate the performance of the algorithm. Thus, our 
goal is to find an algorithm that minimizes the error between 
the actual value and its prediction in the test set. Note that the 
test set is not used in either the parameter selection or training 
phase. 

We use the notation 𝐸 𝑡   as the vector of prediction for the 
next 24 hours ending at t (Fig 1. a). Also, 𝑡! = {1,2,… ,𝑁!"} 
and 𝑡! = {𝑁!" + 1,… ,𝑁} are the set of indices for the training 
and test sets, respectively. Later on, in the parameter selection 
phase, parts of the training set will be treated as the validation 
set. The different methods used to select the validation set are 
further explained in the parameter selection section. 

 
Figure 1.  a) energy consumption vector (E) for 24 hours , b) input-output 

pairs and division of data into training and test sets, c) labeling inputs as x and 
outputs as y. 

IV. APPLIED ALGORITHMS 
Four prediction algorithms have been briefly described 

here.  These algorithms were employed to compare and 
demonstrate the effectiveness of the proposed approach. A 

a) 

 
b) 

 
c) 
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k-Nearest Neighbor Algorithm 
Inputs: 𝑥(𝑡!), 𝑦(𝑡!), 𝑥(𝑡!∗), 𝑘 
Output: 𝑦(𝑡!∗) 
1.    for 𝑗   ∈ 𝑡! 
2.  𝑑𝑖𝑠[𝑗] = ‖𝑥(𝑡!∗) − 𝑥(𝑗)‖ 
3.    for 𝑖   ∈ {1,… , 𝑘} 
4.    𝑖𝑑𝑥[𝑖] = index  of  𝑖!! smallest(𝑑𝑖𝑠)  
5.        𝑦(𝑡!∗) =

!
!
∑ 𝑦(𝑖𝑑𝑥[𝑖])!∈{!,…,!}  

Lazy Learning Algorithm 
Inputs: 𝑥(𝑡!), 𝑦(𝑡!), 𝑥(𝑡!∗), 𝑘!"#    
Output: 𝑦(𝑡!∗) 
1.    for 𝑗   ∈ 𝑡! 
2.  𝑑𝑖𝑠[𝑗] = ‖𝑥(𝑡!∗) − 𝑥(𝑗)‖ 
3.    for 𝑖   ∈ {1,… , 𝑘!"#} 
4.    𝑖𝑑𝑥[𝑖] = index  of  𝑖!! smallest(𝑑𝑖𝑠)  
4.    for 𝑘   ∈ {2,… , 𝑘!"#} 
5.  𝑦(𝑘) = !

!
∑ 𝑦(𝑖𝑑𝑥[𝑖])!∈{!,…,!}  

6.  Calculate 𝑒!""(𝑘) according to Eq. (7)  
7. 𝑘∗ = arg  (min!  ∈{!,…,!!"#} 𝑒!""(𝑘)) 
8.        𝑦(𝑡!∗) = 𝑦(𝑘∗) 
 

detailed description can be found in [25]. 

A. Historical Average 
This algorithm is one of the simplest algorithms that is 

sometimes referred to as naïve approach and is used only for 
comparison with other methods. According to this approach, 
the predicted charging energy in the future is the average of 
the charging energy consumption in the past. Formally: 

𝐸 𝑡 =
1
𝐷

𝐸(𝑡 − 24𝑑)
!

!!!

   (3), 

where D is the depth of the averaging. For instance, the 
predicted energy consumption for 3pm on the next day is 
equal to the average of the energy consumed today, 
yesterday…, and up to the past D days at 3pm. D is a 
parameter that needs to be selected before the evaluation on 
the test set. 

B. K-Nearest Neighbor 
This algorithm is a well-known algorithm in the machine 

learning community [26]. Based on the k-Nearest Neighbor 
(kNN) algorithm, each sample (training, test or validation) is 
composed of input and output pairs. In our application, as seen 
in Fig. 1. c, the output is the predicted energy consumption for 
the next 24 hours: 

𝑦 𝑡 = 𝐸 𝑡  (4), 

and the input is the concatenation of the consumption records 
for up to D previous days: 
𝑥 𝑡 =    {𝐸 𝑡 − 24 ,𝐸 𝑡 − 48 ,… ,𝐸 𝑡 − 24𝐷 }  (5). 

This concatenation repeats for all days: if there are N days 
in the data set, there will be N-D+1 of these input-output pairs 
(Fig 1.b). The total number of data points is  𝑛 = 24𝑁. Now, in 
order to find an estimate for 𝑦(𝑡!∗) where 𝑡!∗ ∈ 𝑡! is an 
instance of test set indices, first, the dissimilarity between 
𝑥(𝑡!∗) and all other 𝑥(𝑡!) that belong to the training set is 
computed. We have used the Euclidian distance as the 
measure of dissimilarity here. After determining the k 
closest  𝑥 𝑡!  to  𝑥(𝑡!∗), the average of their corresponding 
𝑦(𝑡!) is generated as  𝑦(𝑡!∗). In this algorithm, the parameter k 
needs to be determined. Fig. 2 illustrates the algorithm where 
𝑑𝑖𝑠[𝑗] refers to dissimilarity between  𝑥 𝑡!∗  and 𝑥 𝑗 . 

Figure 2.  k-Nearest Neighbor Algorithm. 

C. Weighted k-Nearest Neighbor 
Weighted kNN is based on the idea that closer points to the 

query should contribute more to the output and in this way 
improve the accuracy of the prediction compared to kNN [1]. 

This algorithm is very similar to the original kNN algorithm 
with the exception that instead of averaging the k closest 
training outputs (Fig. 2, step 5) their weighted average is used, 
where the weights are a function of the dissimilarity between 
input pairs. The weights are defined based on Dudani’s 
weights [1] which seems to give better results compared to 
other similar weight assigning methods according to both 
literature [2] and our simulations. Thus, the following two 
steps will substitute for Step 5 in Fig. 2: 

 

𝑤! =
𝑑𝑖𝑠[𝑘 + 1] − 𝑑𝑖𝑠[𝑝]
𝑑𝑖𝑠[𝑘 + 1] − 𝑑𝑖𝑠[1]

            𝑝 = 1, . . , 𝑘  

𝑦 𝑡!∗ =
1
𝑤!!∈!"#

𝑤!𝑦 𝑝
!∈!"#

 

 
(6), 
 
 
(7). 

D. Lazy Learning 
Lazy Learning (LL) is a generic term which refers to 

algorithms that postpone the learning until a query is 
submitted to the system. In fact, weighted kNN and kNN are 
simple forms of LL. A version of LL according to [27] has 
been implemented in this paper. This version of the LL 
algorithm is similar to the kNN algorithm in principle, with 
the difference that for each query, the optimum number of 
neighbors (k) is not fixed and is estimated separately. The idea 
is that for some queries it seems better to look at more 
neighbors and for some others, fewer neighbors would be 
enough. For each query, kNN is performed 𝑘!"# times 
for  𝑘 = {1,2,… , 𝑘!"#}. Then, based on Leave-one-out (LOO) 
cross validation, the error for each k is estimated, and the 
output corresponding to the k with a lower LOO cross 
validation error is selected. We use the PRESS statistic [27] to 
estimate LOO for each k. For a fixed  𝑘   ∈ 1,2,… , 𝑘!"# , 
suppose 𝑗∗ ∈ 1,2,… , 𝑘  indicates the index of the jth closest 
neighbor to the query  𝑥(𝑡!∗). For each  𝑗∗, we define an error 
term 

𝑒! 𝑗∗ = 𝑘
𝑦 𝑗∗ − 𝑦(𝑖)

𝑘 − 1
     (6), 

which gives the LOO cross validation error for the specific 𝑘: 

                𝑒!"" 𝑘 =
1
𝑘

(𝑒! 𝑗∗ ! ∗ (𝑒! 𝑗∗ )
!

!∗!!

   (7). 

The k with smallest 𝑒!"" will be selected as the optimum k. 
The steps are detailed in Fig. 3.  



To appear in Proceedings of the 2014 IEEE PES General Meeting, 27-31 July. National Harbor, MD, USA. (in press). 
 

Figure 3.  Lazy Learning Algorithm. 

V. SIMULATION SETUP AND PRELIMINARY RESULTS 

A. Data  
The algorithms described above are applied to charging 

stations located on the UCLA campus. The data used in this 
paper were recorded from December 7, 2011 to October 16, 
2013; however, for each day, not all stations were in use. 
Among all the charging stations at UCLA, 15 stations have 
charging data for more than 60 effective days (days that some 
nonzero charging has been reported); these stations have been 
used in our implementation. The number of effective days for 
each station is reported in Table I.  

Data for each station comes in a format which is referred to 
as Charging Records. Each charging record contains the 
beginning and end of the charging time as well as the acquired 
energy. 

B.  Preprocessing 
The Charging Records are converted to time series by 

uniformly dividing the acquired energy to the charging 
interval. For example, if charging interval is 3 hours and the 
acquired energy is 3kWh, it is assumed that the EV received 
1kWh of energy in each hour. In pre-processing the data, if all 
the values in an input-output pair (𝑥(𝑖), 𝑦(𝑖)) are zero or not 
reported, the pair was removed from the data set. 

There was no normalization or feature extracting from the 
data. The only implemented pre-processing was to force 
energy records that were mistakenly recorded as more than the 
physical maximum of the charging device (𝐸!"#) and less 
than zero to the interval of  [0,𝐸!"#]. 

C. Parameter Selection 
The following parameters need to be determined for our 

algorithms: Depth,  𝐷, for all algorithms, which is the number 
of previous days considered in the input vector, and the 
number of neighbors,  𝑘, in kNN and weighted kNN. 

There are different options for performing parameter 
selection through validation in time series [3]. One of the 
popular methods is the k-fold cross validation. In k-fold cross 
validation, for evaluating a certain set of candidate parameters, 
the training data is divided into k parts (𝑃! , 𝑖 = 1,… , 𝑘) and 
algorithm trains on k-1 parts (𝑃!! = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑠𝑒𝑡 − 𝑃!) while 
the error is calculated on the remaining part (𝑃!), i.e., the 
validation set. This process iterates k times, and each time one 
of the parts will be the validation set and the other k-1 parts 
will make up the training set. The average error of the 
algorithm on these k iterations will determine the final error 
for the current selection of parameters. The whole process is 
repeated for different combinations of parameters and the 
combination that yields the least final error is selected as 
algorithm parameters. 

 However, [4] discusses how k-fold cross validation in its 
original form might not be appropriate for time series since it 
does not respect the order. It proposes a “time series cross 
validation” in which for cross validation we are only allowed 
to use training data prior to the validation set, i.e. if validation 

set is 𝑃!, then the training data would be 𝑃! , 𝑗 = 1,… , 𝑖 − 1  
instead of 𝑃!!. Another approach taken in [29] is to use the last 
portion of the training data for validation and parameter 
selection purposes. In this approach, the validation set is the 
last block of training data, 𝑃!, and the rest of data prior to it, 
𝑃! , 𝑗 = 1,… , 𝑘 − 1, is used for training; hence,  it is less 
computationally expensive since it evaluates parameters on 
just one block rather than k blocks.  

 
Figure 4.  Separating validation data from training data in the last block 

validation method.    

We have tried all of the three mentioned validation 
methods: k-fold cross validation, time series cross validation, 
and the last block validation. We found that they lead to 
similar behavior in the final results; therefore, in this paper, 
we are going to dedicate the last block of training data to 
validation data which is relatively less computationally 
expensive, and therefore more appropriate for our fast 
prediction application. This method basically partitions the 
data to non-overlapping training, validation and test data sets 
as depicted in Fig 4. 

The length of the validation block is the next matter of 
importance. We must determine how much of the last portion 
of the available data is a good representative of the behavior of 
all the data for specific parameters. In order to answer this 
question, we picked different percentages of the last part of the 
training data for each station and each algorithm, and we 
compared it with the whole dataset in terms of similarity in 
response to change in parameters.  

The smallest percentage of data that could represent the 
whole training dataset for all algorithms is selected as the final 
validation set for each station. Table I shows the percentage of 
the data that is used as validation set for each station. The 
candidate percentages were: 10%, 15%, 20%, 25%, and 30%. 

TABLE I.   NUMBER OF EFFECTIVE DAYS FOR EACH STATION AND 
PERCENTAGE OF DATA USED FOR TRAINING, VALIDATION AND TEST SETS  

No Station Effective 
Days 

Training 
Set (%) 

Validation Set 
(%) 

Test Set 
(%) 

1 PS3L401LIA3 95 85 15 10 
2 PS8L201LIA1 84 85 15 10 
3 PS8L201LIA3 97 85 15 10 
4 PS8L201LIA4 171 90 10 10 
5 PS8L202LIIA1 163 85 15 10 
6 PS8L202LIIA2 168 90 10 10 
7 PS8L202LIIA3 151 90 10 10 
8 PS9L401LIA1 178 80 20 10 
9 PS9L401LIA2 126 75 25 10 
10 PS9L401LIA3 307 90 10 10 
11 PS9L401LIA5 189 80 20 10 

Test Data Validation Data Training Data 
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12 PS9L401LIA6 269 80 20 10 
13 PS9L601LIA1 206 70 30 10 
14 PS9L601LIA3 178 80 20 10 
15 PS9L601LIA4 124 85 15 10 

 
For parameter selection, the depth parameter, D, is varied 

between 1 to 60 (equal to looking only at yesterday or up to 
the past two months); in order to make the process faster, a 
subset of 1 to 60, namely {1,2,…,9,10,15,20,…,60} is 
employed. The number of neighbors varies between 1 to 5 for 
kNN and 2 to 5 for weighted kNN (weighted kNN with k=1 is 
the same as kNN with k=1). 

D. Preliminary Results 
Table II and III show the depth (D) and number of 

neighbors (k) parameters, selected according to the previous 
section, for each site and each parameter. 

TABLE II.  SELECTED DEPTH PARAMETER FOR EACH ALGORITHM 
BASED ON VALIDATION RESULTS 

No Station Historical 
Average 

kNN Weighted kNN Lazy 
Learning 

1 PS3L401LIA3 1 60 60 60 
2 PS8L201LIA1 1 55 8 60 
3 PS8L201LIA3 1 50 60 60 
4 PS8L201LIA4 2 55 4 20 
5 PS8L202LIIA1 1 40 1 40 
6 PS8L202LIIA2 1 60 1 35 
7 PS8L202LIIA3 1 20 1 20 
8 PS9L401LIA1 1 15 1 2 
9 PS9L401LIA2 1 15 4 15 
10 PS9L401LIA3 1 35 15 25 
11 PS9L401LIA5 1 45 45 45 
12 PS9L401LIA6 1 60 1 60 
13 PS9L601LIA1 1 60 60 60 
14 PS9L601LIA3 1 60 55 55 
15 PS9L601LIA4 1 30 30 50 

 

After selecting the parameters, the union of the training data 
and validation data are treated as the new training dataset and 
used for predicting the first day in the test dataset. For 
predicting the second day in the test dataset, the union of 
training dataset, validation dataset, and the first day in the test 
data is used; similarly, for predicting the ith day in the test set, 
all the data prior to it (training dataset, validation dataset, and 
test dataset up to (i-1)th day) is employed. 

Interestingly, as can be seen in Table III, for all stations, the 
optimum number of neighbors is chosen to be equal to 1 for 
the kNN algorithm. This shows that, regardless of the 
optimum number of days to forecast, it is always better to look 
at the most similar event in the past and copy its future energy 
consumption values as the prediction. Also, the optimum 
number of neighbors for weighted kNN in all stations is 2; 
considering that k ranges from 2 to 5 and the kNN algorithm 
with k=1 shows better performance, one can conclude that k=1 
is the optimum parameter. 

TABLE III.  SELECTED NUMBER OF NEIGHBOURS PARAMETER FOR EACH 
ALGORITHM ASED ON VALIDATION RESULTS 

No Station kNN Weighted kNN 
1 PS3L401LIA3 1 2 
2 PS8L201LIA1 1 2 

3 PS8L201LIA3 1 2 
4 PS8L201LIA4 1 2 
5 PS8L202LIIA1 1 2 
6 PS8L202LIIA2 1 2 
7 PS8L202LIIA3 1 2 
8 PS9L401LIA1 1 2 
9 PS9L401LIA2 1 2 

10 PS9L401LIA3 1 2 
11 PS9L401LIA5 1 2 
12 PS9L401LIA6 1 2 
13 PS9L601LIA1 1 2 
14 PS9L601LIA3 1 2 
15 PS9L601LIA4 1 2 

 
Table IV shows the average and standard deviation of 

SMAPE on test days for each algorithm and each station. 

TABLE IV.  AVERAGE AND STANDARD DEVIATION (IN PARANTHESES) OF 
SMAPE (%) ON TEST DAYS FOR EACH ALGORITHM 

No Historical 
Average 

kNN Weighted kNN Lazy 
Learning 

1 95.98 (2.36) 3.40 (6.72) 3.58 (7.06) 3.72 (7.48) 
2 97.62 (1.64) 16.08 (34.67) 33.83 (45.63) 16.11 (29.48) 
3 97.45 (1.16) 51.45 (31.40) 49.64 (33.08) 49.69 (33.13) 
4 94.10 (4.75) 1.64 (3.15) 13.12 (17.45) 14.40 (11.89) 
5 87.04 (8.91) 28.43 (19.77) 35.08 (23.87) 34.94 (15.99) 
6 83.19 (10.96) 35.21 (12.60) 26.61 (16.18) 37.82 (13.87) 
7 87.07 (11.61) 28.63 (17.54) 22.90 (16.05) 38.72 (14.80) 
8 80.44 (14.54) 21.20 (28.01) 22.16 (21.82) 25.67 (27.08) 
9 95.95 (2.55) 12.38 (8.61) 18.19 (9.20) 16.05 (10.89) 
10 92.82 (10.43) 8.66 (14.62) 12.32 (18.69) 12.37 (18.10) 
11 87.71 (11.71) 7.14 (11.83) 12.70 (13.11) 13.19 (13.62) 
12 76.69 (12.23) 3.75 (13.34) 18.75 (17.57) 3.75 (13.34) 
13 91.99 (4.84) 10.64 (10.26) 15.82 (10.68) 16.11 (10.73) 
14 90.94 (5.28) 9.78 (12.33) 14.06 (12.24) 14.72 (12.22) 
15 87.49 (5.91) 8.37 (12.29) 10.12 (14.83) 11.28 (16.01) 
Mean 84.86 (7.26) 16.45 (15.81) 20.59 (18.50) 20.57 (16.57) 
 

The historical average has by far the worst performance. 
For better comparison, the error for other three methods has 
been depicted in Fig. 5. 

Comparing LL results with kNN, it seems that LL was not 
successful in choosing the best number of neighbors (k) for 
each query; otherwise, it would have better results compared 
to kNN (which has a constant k). Stations no. 3 is the 
exceptions to this, where LL does (slightly) better than kNN. 
Also weighted kNN does a better job in stations no 6 and 7. 
Overall, the accuracy results for kNN with k=1 (which is the 
Nearest Neighbor) nominates it as the best method. It is 
notable that for station no. 3 all algorithms result SMAPE of 
around 50%. 

All simulations were run with RStudio Version 0.97.551 on 
an Intel Core i-7 CPU at 3.40 GHz with 16 GB RAM. 
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Figure 5.  Comparing kNN, wkNN, and LL. kNN gives the better overal 

accuracy. 

VI. PROPOSED ALGORITHM 
In the previous section, we found that the Nearest Neighbor 

(NN) algorithm has the best performance as the fast predictor 
algorithm on the examined data. However, there is still a room 
to improve the results since the results for some of the stations 
is not yet satisfactory, e.g. station no 3. 

Looking at Fig. 2 for the kNN algorithm, it turns out that 
after selecting k (which, through parameter selection, is equal 
to 1), there is not much room for modifying the algorithm 
except step 2 which is the dissimilarity calculation step. The 
dissimilarity that have been used in the paper is Euclidean 
distance. Thus, we are focusing on modifying the dissimilarity 
measure in step 2 of the kNN algorithm in order to improve 
the performance. 

A. Dissimilarity measures  
In applying the NN algorithm, we used Euclidian distance 

to measure the dissimilarity between two data points and 
determine the nearest neighbor of each input query. However, 
the EV charging data is sparse, meaning that in significant 
chunks of time, e.g. during nights in the government or official 
parking spaces, there is no charging in progress and the 
consumed power is zero. When the data is sparse, it might be 
beneficial to employ other dissimilarity measures than 
Euclidian distance.  

One way to define the dissimilarity measure is to use the 
inverse or negative of a similarity measure. A candidate for 
similarity measure is the dot product of two vectors since it is 
zero when two vectors are orthogonal to each other and is 
maximum when they are equal. Specifically, the dot product 
of two signals that have non-zero elements in different indices 
is equal to zero. Fig. 6 illustrates this concept: the dissimilarity 
between vectors X and Y is equal to 2 for both cases when it 
is calculated through Euclidean distance while the 
dissimilarity calculated through dot product in Fig.6.a is 
higher (−< 𝑋,𝑌 >= 0) than Fig.6.b (−< 𝑋,𝑌 >= −3). This 
fits well to sparse time series prediction applications, since the 
similarity between two pieces of signals with different indices 
of non-zero elements should be as less as possible. 

B. Kerneleized similarity 
Upon using the dot product as similarity measure, one can 

use kernelized similarity measures to get more flexibility and 
to compute similarity in higher dimensions [31]. In particular, 
polynomial kernels are interesting for us here since it is the 
natural extension of the dot product. A polynomial kernel for 
similarity between x and y is often defined as following [25]: 

𝐾 𝑥, 𝑦 = 𝑥!𝑦 + 𝑐 !      (8), 
where 𝑐 ≥ 0 is a constant that is trading off the influence of 
higher-order terms versus lower order ones and d is the degree 
of the polynomial kernel. Now, we can define the dissimilarity 
measure based on the polynomial kernel: 

𝑑𝑖𝑠(𝑥(𝑡!), 𝑥(𝑡!)) = −𝐾(𝑥(𝑡!), 𝑥(𝑡!))   (9). 
Another alternative for defining dissimilarity based on 

kernels is to find the distance of two inputs in the kernel space 
which can be obtained from the following equation:  

𝑑𝑖𝑠 𝜑 𝑥 𝑡! ,𝜑 𝑥 𝑡!
!
= 𝐾 𝑥 𝑡! , 𝑥 𝑡! +

𝐾(𝑥(𝑡!), 𝑥(𝑡!)) − 2𝐾(𝑥(𝑡!), 𝑥(𝑡!)).  
(10). 

It, however, needs more computation because of self-
mapping terms, and it does not improve our results in practice. 

 

 

 
Figure 6.  Comparison between Euclidean and dot product similarities of two 
vectors X and Y. Euclidiean distance gives the same dissimilarity for both a) 
and b) while dot product based dissimilarity, assigns higher disimilarity to a). 

C. Time weighted dissimilarity  
Another intuitive modification of the dissimilarity measures 

could be time weighting; for instance, outputs 𝑦 𝑡!  and 𝑦(𝑡!) 
are more similar if the recent values of their corresponding 
inputs 𝑥 𝑡!  and 𝑥(𝑡!) are more similar.  In order to weight 
the recent values for an input that has been defined in (5), we 
have used linear time weighting: 

𝑇𝑊 = [1 + 𝐷  ,… ,1 + 2∆,1 + ∆,1] 
where ∆= 1/(24𝐷 − 1) and D is the depth of input. Also, we 
have tried other weighting methods such as exp(TW) but we 
did not see improvement in the final results. 

Combining all the modifications together, the dissimilarity 
measure used in kNN algorithm will be substituted with: 
𝑑𝑖𝑠(𝑥(𝑡!), 𝑥(𝑡!)) = − 𝑥 𝑡! !  𝑑𝑖𝑎𝑔 𝑇𝑊   𝑥 𝑡! + 𝑐 !  (10). 
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D. Results 
We used the same settings as discussed in Section V and the 

only difference in this section is modifying the dissimilarity 
measure. This modification however adds two more 
parameters c and d according to (10) which, like other 
parameters, need to be determined with validation. However, 
in different simulations we did not see much of a difference in 
the final results of the NN algorithm with the change in c or d. 
Therefore, both of these parameters have been set equal to 1. 
The conclusion is that similarity in higher order terms are not 
necessary for finding the prediction related similarity in our 
application, and only the linear terms’ contribution is enough 
for prediction. This is good news computational wise since 
there is no need to try higher order terms. 

Fig. 7 shows a sample test day from Station 1 and its 
prediction. The SMAPE for this specific day is 16.93%. The 
results for all stations are presented in Table V. According to 
the Table V, the average SMAPE has been improved in all 
methods compared with the Euclidean distance case. Fig 8 
displays the kNN, weighted kNN, and LL results with 
modified dissimilarity measure. It’s notable that maximum 
SMAPE for all methods has been decreased to less than 35% 
SMAPE.  

TABLE V.  AVERAGE AND STANDARD DEVIATION (IN PARANTHESES) OF 
SMAPE (%) ON TEST DAYS FOR EACH ALGORITHM 

No Station kNN (k=1) Weighted kNN 
 (k=2) 

Lazy Learning 

1 PS3L401LIA3 3.96 (7.62) 3.65 (6.44) 4.04 (7.04) 
2 PS8L201LIA1 0.67 (2.43) 0.67 (2.43) 0.67 (2.43) 
3 PS8L201LIA3 0.79 (4.53) 1.49 (5.43) 1.49 (5.43) 
4 PS8L201LIA4 9.24 (10.16) 19.54 (13.44) 19.54 (13.44) 
5 PS8L202LIIA1 20.09 (19.12) 23.08 (21.41) 21.50 (18.10) 
6 PS8L202LIIA2 30.50 (16.55) 34.73 (9.94) 34.20 (10.68) 
7 PS8L202LIIA3 24.09 (19.79) 25.61 (19.13) 26.46 (20.48) 
8 PS9L401LIA1 22.95 (21.37) 32.57 (28.79) 32.28 (28.14) 
9 PS9L401LIA2 11.46 (7.75) 13.20 (9.10) 13.62 (10.19) 
10 PS9L401LIA3 5.96 (14.09) 5.96 (14.09) 5.96 (14.09) 
11 PS9L401LIA5 14.38 (13.84) 16.17 (14.02) 16.17 (14.02) 
12 PS9L401LIA6 18.91 (17.90) 13.96 (22.16) 13.96 (22.16) 
13 PS9L601LIA1 13.89 (13.62) 16.57 (15.06) 16.54 (14.94) 
14 PS9L601LIA3 7.81 (12.02) 8.34 (11.67) 8.36 (11.69) 
15 PS9L601LIA4 6.45 (12.41) 6.45 (11.61) 6.45 (11.61) 
Mean  12.74 (12.88) 14.80 (13.65) 14.75 (13.63) 
 
The interesting difference in the pattern of SMAPE errors 

between results from two different dissimilarity measures has 
been depicted for NN case in Fig. 9. As this figure shows, for 
stations that the Euclidean dissimilarity has relatively high 
errors such as station no. 3, the dot product similarity has 
relatively low errors and vice versa. The fact that SMAPE 
error in station no. 3 has decreased from 51% (NN with 
Euclidean distance) to 0.79% (NN with dot product 
dissimilarity) illustrates that dot product was extremely 
successful in finding similar points in the time vectors and 
making the prediction based on that. This phenomenon shows 
that, depending on the characteristic of the time series in hand, 
we might need to change our point of view (from measuring 
Euclidean dissimilarity to dot product one) to be able to see 
the similar points in the training data to our test query.  

 

 
Figure 7.  Actual enrgy consumption (green) and its prediction with dot 
product based NN algorithm (red) for a sample test day in Station 1. The 

SMAPE for this day is 16.93%.  

In fact, the effective characteristic here seems to be 
sparseness of the time series.  Fig. 10 show the percentage of 
the sparseness of the time series (number of zero entries 
divided by the total number of entries in the times series) 
calculated with the optimum depth for each station. 
Comparing this plot with dot product plot in Fig. 9 shows an 
interesting relationship: The time series which dot product 
based dissimilarity does better, are mostly sparser ones.  

In order to take advantage of both dissimilarity measures, 
we implement the best method for each station with the best 
dissimilarity measure. For example, from Fig. 9, for station 
no. 3 we use the NN with the dot product dissimilarity while 
for station no. 12, we use the NN with Euclidean dissimilarity. 

The more accurate algorithm will help the EV charging 
station owner to increase the profit. Knowing the prediction of 
the consumption in the future, the station owner can utilize all 
the capacity of charging stations and therefore obtain more 
profit; on the other hand, the station owner can reduce the 
disappointment of the EV owner in the case of all stations 
being full. Depending on which factor is more important for a 
certain EV station owner, s/he can penalize the over prediction 
of consumption (which translates to empty stations in 
sometimes of the day) or under prediction of the consumption 
(which translates to disappointed EV owner) in an appropriate 
way. Here, the SMAPE accuracy measure introduced in (2) is 
a symmetric one and does not penalize either over prediction 
or under prediction. However, the algorithms are readily 
usable for asymmetric error measurement criteria. 

 

 
Figure 8.  Comparing kNN, wkNN, and LL for dot product dissimilarity 

measure. kNN gives the better overal accuracy. 
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Figure 9.  Comparing kNN, wkNN, and LL for dot product dissimilarity  

 
Figure 10.  Sparseness of the time series of each station calculated at the 

optimum depth. 

 
VII. CELLPHONE APPLICATIONS BASED ON PROPOSED 

ALGORITHM 
Based on the results, NN with the modified dissimilarity 

measure (which is simply the dot product) has higher accuracy 
on most of the stations with sparser time series and NN with 
the original Euclidean distance dissimilarity is performing 
better on stations with less sparse time series were selected as 
the algorithm for the cellphone application. We implemented 
two algorithms on top of the prediction algorithm: 

• One application takes the station name, required 
energy (in kWh) needed to charge the vehicle, and 
the start of charging time as input. The output is  
the predicted end time of charging, 

• Another application takes the station name, starting 
time and ending time for the charging as input. The 
output is the predicted amount of available energy 
in kWh. 

The total time for the algorithm to run is about a second 
(less than a second for less crowded stations), which is 
composed of the time to (a) run in C# under Microsoft Visual 
Studio 2012, (b) access the database through Microsoft SQL 
Server 2012, and (c) generate the output. This is well within 
the acceptable time for a mobile application response time. 
The algorithm is now running on the mobile application and is 
available to UCLA EV owners. 

VIII. CONCLUSION 
In this paper, we have developed an approach for fast 

demand prediction of the sparse time series in general, and 
specifically EV charging stations. We found that, in general, 
Nearest Neighbor based predictions generate better predictions 
than kNN and weighted kNN. We modified the dissimilarity 
measure in NN from standard Euclidean distance in two ways:  
1) changing Euclidean distance to (negative) dot product and 
2) adding time weightings to the dissimilarity measure so that 
recent similar indices in time series get more weight than older 
ones. Each of these modifications improves the accuracy by 
itself and their combination improves the results more. 

We have implemented this method in the cellphone 
application system that is used by UCLA EV owners. 
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